# Missing data

## Silje Synnøve Lyder Hermansen

2023-05-11

Silje Synnøve Lyder Hermansen

Missing data

2023-05-11 1/28

Recap: our course

# Recap: our course

## Recap: our course

#### We are entering the last part of this course

- 1. R-skills (week 1-3)
- 2. Limited and categorical outcome variables (GLMs) (week 4-10)
- 3. Data structures (week 11-14)

Recap: our course The purpose of this course

## The purpose of this course

## The purpose of this course

 $\Rightarrow$  The purpose of this course is to find solutions when the assumptions of the linear model are not satisfied

## Two assumptions in ordinary regression

## Two assumptions in ordinary regression

## Linear models (OLS) rely on two assumptions that are often violated

- 1. Assumption 1: outcomes are continuous and unbounded (week 4-10)
- 2. Assumption 2: observations are independent and identically distributed (iid) (week 11-14)
  - independent: probabiliy of observing one unit is not dependent on observing another
  - identically distributed: observations come from the same data generating process/probability distribution
- $\Rightarrow$  strategies for when these are not satisfied

## Solutions to violations of those assumptions

**1. Assumption 1:** Limited and categorical outcome variables (GLMs): - recode the dependent variable and describe the data generating process w/probability distribution - choice of model depends on the data generating process - e.g. logit, multinomial, ordinal, poisson, neg.bin, zero-inflated, coxph...

**2.** Assumption **2**: Observations are not iid: - hierarchical/nested data - missing data

 $\Rightarrow$  what do we do when observations are not iid?

Recap: our course Today (week 13 and 14)

## Today (week 13 and 14)

Sources of missing data

# Sources of missing data

# Sources of missing data

#### Most data contain missing observations

- missing data (NA) is the result of a "lurking" variable that :
  - assigns NA to some of the other variables
  - ... possibly affecting both x and y
- ▶ the "lurking" means that the assignment mechanism is not observed
  - think about the data generating process of the NA
  - we have to theorize/make assume
- $\Rightarrow$  addressing/reducing the problem is often easier than what we think

Sources of missing data Classifications of missing data:

## Classifications of missing data:

# Take 1

## The original classification by Rubin (1979)

- MCAR (Missing Completely at Random)
  - probability of NA is the same for all cases
- MAR (Missing at Random):
  - probability of NA depends on *observable* data (known sources)
- MNAR (Missing Not at Random)
  - probability of NA depends on unobservable data (unknown sources)
- $\Rightarrow$  these are assumptions that we can never test

# Why is it a problem

- ► statistical power (MCAR): only a problem if it reduces the N too much → a representative sample
- information bias (MAR, MNAR): we only record parts of a phenomenon (recall bias, missclassification, observer bias...)
  - independent variables:
    - we might not get the full "elasticity" of the variable
  - dependent variable: do we underestimate our phenomenon?
- selection bias (MAR, MNAR):
  - our estimate is biased because the unobserved assignment of NA affects both x and y

# Take 2

### We can subdivide the last category

- MCAR (Missing Completely at Random)
  - ► NA are not dependent on any predictors (observed or not): not conditional → you can ignore the problem, unless you have too little statistical power
- MAR (Missing at Random):
  - NA depends on the value of other observed predictors: it is conditional → ignorability; you can condition on the other predictors
- MNAR (Missing Not at Random)
  - NA depends on unobserved data
  - NA depends on the value of the predictor itself (e.g. censoring)

 $\rightarrow$  NA must be modeled, or you will have to accept a biased estimate

Strategies

# Strategies

Strategies Simple strategies

## Simple strategies

## Discard data

#### Ignore the problem

- complete case analysis:
  - the usual "listwise.exclusion"
- available data analysis:
  - analyze subsets of data separately
  - exclude variables with missing observations
- weighing of NA according to predictors
  - ► common in surveys → some cases may be underrepresented in the data, because of NA

# Replace each NA by a single value

## We can also infer the missing values in fairly simple ways

#### mean imputation:

replace the missing data by the variable mean

#### **conditional mean imputation:** use information from other variables

group mean, regression predictions

 $\Rightarrow$  still possible to insert bias, and doesn't take into account the uncertainty from our estimate

Multipe imputation

# Multipe imputation

# Multipe imputation

# Multiple imputation generates several predictions for each missing value to account for the uncertainty

- step 1: make predictions for the missing values by adding som random noise for each model
- $\rightarrow$  we end up with several data sets (5-20 frames)
  - step 2: estimate the main model on all the different data sets
- $\rightarrow$  pool over the regression parameters

Multipe imputation EM algorithm

## EM algorithm

# EM algorithm

The EM is the base-line approach, and only has one data frame in the end

- we have several variables
- E-step:
  - give your NA some initial values
  - predict your x<sub>miss</sub> using the observed values and initial values of x (and all other predictors)
- M-step:
  - re-do until you your predictions of x<sub>miss</sub> don't change any more (set a value at which you stop)

 $\Rightarrow$  classic maximum likelihood with a twist

## Multiple Imputation via Chained Equations (MICE)

# Multiple Imputation via Chained Equations (MICE)

We assume a set of variables are correlated, and use them to predict for each other in turn (a cycle)



Figure 1: Mice thrive in holes...

Imagine x, y and z:

cycle 1:

- x α + β<sub>1</sub>y + β<sub>2</sub>z:give y and z some starting value; regress x on all other models
- y α + β<sub>1</sub>x̂ + β<sub>2</sub>z: replace missing values of x by predicted x̂
- $\blacktriangleright z \alpha + \beta_1 \hat{x} + \beta_2 \hat{y}$ : same
- cycle 2-...: rinse and repeat until nothing changes (convergence)

## ... and add som random noise

# This is usually done together with a bit of (random) noise at each step

- ▶ for each iteration, create a new data set with imputed variables
- run regular (g)lm on each data set:
  - regression parameters  $(\beta)$  are averaged over
  - the standard error is a fusion of both:
    - within-model variation: standard errors from the regression
    - between-model variation: the deviation between the regression parameters

## .. then check

#### ... were my imputations appropriate?

## problem of overfitting:

- you may have perfect in-sample predictions, that are useless for out-of-sample imputation
- overimputation: randomly leave observations out, check if you predict correctly

Literature

## Literature