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Before we start

Let’s touch base

We will be using mentimeter (menti.com) to communicate
interactively.

▶ answer questions on www.menti.com using the access code 8471
19241

▶ results show on screen

⇒ Relax, your answers are anonymous!
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A latent variable approach

Section 2

A latent variable approach to GLMs
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A latent variable approach

Many outcomes are not continuous

OLS assumes a continuous dependent variable. But many
phenomena in the social sciences are not like that.

▶ Vote choice, civil conflict onset, legislator performance, court rulings,
time to compliance, etc.

▶ What phenomena are you interested in?

⇒ OK. Let’s strategize.
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A latent variable approach

All regressions are linear(ized)

The basic formulation in any regression describes a linear
relationship between xi and yi :

yi = α+ βxi + ϵi (1)

▶ When xi increases with one unit, yi increases with β units.
▶ If that relationship is not linear, we have to make it so:

▶ by recoding the xi
▶ by recoding the yi → we linearize.
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A latent variable approach

A latent variable

A linear(ized) model requires a continuious dependent variable.

▶ Imagine we are interested in unobservable variable, zi , that describes
our propensity towards something.

▶ Above a certain threshold (τ) of zi , observability kicks in and we can
see yi .

▶ The regression coefficients (β) in GLMs describe that relationship.

⇒ The latent variable approach is useful when interpreting the results.
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A latent variable approach

Example: The binomial model

The logit model is a perfect example:

yi =

{
1 ⇔ zi > τ
0 ⇔ zi ⩽ τ

(2)

▶ The probability (zi ) of an outcome yi is continuous.

▶ Above a certain probability (τ), we observe a positive outcome
(yi = 1).

⇒ but how do we set the value of τ?
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A latent variable approach

From latent variable to descrete outcomes

Statistical theory helps us describe how zi leads to yi .

▶ What kind of process generated our data? → data generating process
(DGP)

▶ How can we best describe it? → choice of probability distribution (in
GLM)
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A latent variable approach

The three components of GLMs

When fitting the model, we need to make three choices:

▶ A linear predictor: βxi .

▶ A probability distribution: they’re all in the exponential family

▶ A recoding strategy
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A latent variable approach

The three components of GLMs

In R this translates to two additional arguments compared to your
usual OLS.

▶ A linear predictor: → (y ∼ x).

▶ A probability distribution: → (family =)

▶ A recoding strategy → (link = ).
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A latent variable approach

Latent variable approach for interpretation

▶ The latent variable approach is useful when interpreting results.

▶ That’s when we map from the latent variable to the observed
outcome.

⇒ When estimating the model, we have to go the other way ’round.
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Binary to continuous

Section 3

Recoding: How do we get from a binary to a
continuous variable?
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Binary to continuous

Data structure

We can only observe the outcome produced by the latent variable.
There are two data structures for binary data:

▶ classes of observations: e.g.: rats in a cage, coin tosses...

▶ case-based: e.g.: legislator votes, Brexit...
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Binary to continuous

Data structure

We can only observe the outcome produced by the latent variable.
There are two data structures for binary data:

▶ classes of observations: e.g.: rats in a cage, coin tosses... → the
closest to the latent continuous variable.

▶ case-based: e.g.: legislator votes, Brexit...

⇒ we know the number of successes and trials in a cage/class/stratum.
That’s our starting point.
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Binary to continuous The binomial distribution

Let’s start with the odds

Despite binary outcomes, we want a continuous variable that is
unbounded at both ends. We define a stratum and start comparing:

▶ Odds: Compare number of successes with number of failures within a
stratum→ continuous but highly skewed.

▶ Logtransform the odds → continuous and bell shaped.
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Binary to continuous The binomial distribution

Let’s examplify with rats

We kept a 1000 rats in a cage and a number of them died (failure)
while others are still alive (success). How can we model this?
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Binary to continuous The binomial distribution

We calculate the odds

We calculate the odds of surviving in a cage in a 1000 cages

▶ Let’s consider a series of 1000 trials where we let the successes go
from complete failure (success = 0) to complete success (success =
1000)
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Binary to continuous The binomial distribution

success = 0:1000

tries = 1000

#remember: failure = tries - success

odds <- success/(tries - success)

hist(odds, breaks = 100, col = "blue")

hist(log(odds), breaks = 101, col = "blue")

plot(log(odds), success, type = "l")
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Binary to continuous The binomial distribution

Let’s start with the odds

We get a continuous but skewed variable.

The distribution of odds

odds
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Binary to continuous The binomial distribution

Now, let’s logtransform the odds

We get a nice, bellshaped curve.

The distribution of logodds

log(odds)
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Binary to continuous The binomial distribution

Now, let’s logtransform the odds

This, we can run regressions on!

Silje Synnøve Lyder Hermansen Models of outcome and choice: The logit model March 2, 2023 23 / 46



Binary to continuous The binomial distribution

The famous S shape
We can plot the logodds of success against the number of successes
or their probability (it’s the same).
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Binary to continuous The binomial distribution

Probability distributions for binary variables

There are two, closely related probability distributions for binary
outcomes:
▶ The binomial distribution: B(n, p)

▶ p is the probability of success tells where on the x-axis (trials) the
distribution is placed.

▶ n is the number of trials and defines the precision (width) of the
distribution.

▶ The Bernoulli distribution: Ber(p): when we only have only one trial.
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Binary to continuous Why not OLS?

Subsection 2

Why all the fuzz? Why not OLS?
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Binary to continuous Why not OLS?

Distributions in OLS and maximum likelihood

▶ In OLS: The residuals must be normally distributed (but not the yi )

▶ In ML: The zi must follow a known probability distribution.

⇒This what allows us to translate the latent variable to outcomes.
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Binary to continuous Why not OLS?

What happens if I run a linear model on binary outcomes?

▶ The model predicts out of the possible bounderies
▶ Predictions are wrong.
▶ Regression coefficients are wrong.
▶ Standard errors are wrong.

▶ The relationship between xi and yi is constant across all values.

⇒This last element has a bearing for the interpretation.
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Interpretation
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Interpretation Back and forth

Section 4

Interpretation: So... what did I find?

Subsection 1

Back and forth: Logistic and logit transformation
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Interpretation Back and forth

The logit transformation

When we go from outcomes to latent variable we use the logit
transformation.

logit(p) = log(
p

1− p
) (3)

⇒ This what R does when estimating our model
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Interpretation Back and forth

The logistic transformation

When we go from the latent variable to outcomes we use the
logistic transformation.

logit−1(logodds) =
exp(logodds)

1 + exp(logodds)
=

1

1 + exp(−logodds)
(4)

⇒ This what we do when interpreting our model
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Interpretation Three stages of interpretation

My three stages of interpretation

I go through tree stages of interpretation
▶ Inspect the marginal effects from regression table

▶ Logodds: check direction and significance.
▶ Odds ratio (for large coefficients) and percentage change (for smaller

coefficients).

▶ Formulate scenarios using point estimates (in text)

▶ Formulate more scenarios with uncertainty using graphics.
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Interpretation Three stages of interpretation

load("MEP2016.rda")

df <- MEP2016

mod <- glm(PoolsLocal ~

OpenList +

SeatsNatPal.prop +

LaborCost,

family = binomial(link = "logit"),

df)

stargazer::stargazer(mod,

# label = "tab:regression",

title = "MEPs’ propensity to share local assistants (a binomial logit)",

out = "results_table.tex",

type = "latex")
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Interpretation Three stages of interpretation

The regression table: marginal effects

I interpret the regression coefficient itself

▶ Change in logodds: check direction and significance.

▶ Odds ratio (for large coefficients) and percentage change (for smaller
coefficients).

⇒ A first stab at hypothesis testing.
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Interpretation Three stages of interpretation

The regression table: marginal effects
Now, you try! What statements would you make using the change in
logodds, the odds ratio and percentage change?

Table: MEPs’ propensity to share local assistants (a binomial logit)

Dependent variable:

PoolsLocal

OpenList −1.124∗∗∗

(0.181)

SeatsNatPal.prop −1.930∗∗∗

(0.527)

LaborCost 0.056∗∗∗

(0.009)

Constant −1.094∗∗∗

(0.286)

Observations 686
Log Likelihood −392.832
Akaike Inf. Crit. 793.665

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Interpretation Three stages of interpretation

#Change in logodds for MEPs in candidate-centered systems

mod$coefficients[2]

## OpenList

## -1.124427

# Odds ratio: <1 is negative; > 1 is positive

exp(mod$coefficients[2])

## OpenList

## 0.3248387

# Percentage change

(exp(mod$coefficients[2]) - 1)*100

## OpenList

## -67.51613
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Interpretation Three stages of interpretation

The regression table: marginal effects

Typical statements about marginal effects

▶ Change in logodds: ”MEPs from candidate-centered systems are less
likely to share local assistants. Both effects are statistically
significant.”

▶ Percentage change (for smaller coefficients; -1.93).”The likelihood
that an MEP shares a local assistant with a party colleague is 68%
lower when they compete in a candidate-centered system compared to
those that compete in party-centered systems.”

⇒ A first stab at hypothesis testing.
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Interpretation Three stages of interpretation

Predicted values

If you believe the model describes reality appropriately, you can
learn more about it by interpreting more thoroughly

▶ Odds ratios are notoriously hard to understand.

▶ The effect depends on the value of yi and all the other xs.

⇒ Interpret the predicted values

Silje Synnøve Lyder Hermansen Models of outcome and choice: The logit model March 2, 2023 36 / 46



Interpretation Three stages of interpretation

Predicted point estimates (text)

Formulate scenarios using point estimates (in text)

▶ Take an all-else-equal approach: Let one x change and keep all others
constant (on a typical value).

▶ Find the typical representative of two x values and set the other xs
accordingly.

⇒ Which one you use depends on your objective: A theoretical point,
assess effect of intervention on groups...
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Interpretation Three stages of interpretation

Predicted point estimates/first difference (text)

Now you try! What is the predicted effect of changing electoral system
on MEPs’ propensity to share local assistants ...

▶ In Bulgaria (Labor cost == 4.4); when the party is small (Seat share
== 0.1).

▶ In Denmark (Labor cost == 42); when the party is small (Seat share
== 0.1).

▶ Is this a realistic set of scenarios?

⇒ Compare the two predicted probabilities for each pairs of scenarios.

▶ Go to Padlet to provide your answer:
(https://padlet.com/siljesynnove/logit)
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Interpretation Three stages of interpretation

Predicted values (graphic)

Formulate scenarios using point estimates and put them on speed

▶ Predict y values for the entire range of x and plot it.

▶ Simulate confidence and plot that too.

▶ You can do this for two scenarios.

⇒ You get a sense of the actual differences in the data.
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Model assessment

Section 5

Model assessment: How well is reality described?
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Model assessment

Model assessment

Model assessments aim to gauge how well we describe the data
(i.e. the y).

▶ comparison between predicted and observed values (as in OLS).

▶ mapping outcomes to the recoded, ”latent” variable (GLM).

⇒ You have a few additional ”tricks” to the standard OLS assessment.
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Model assessment

Brier score

Describes the ”average size” of the residuals.

Bb ≡ 1

n
Σn
i=1(θ̂i − yi )

2 (5)

⇒ Lower scores imply better predictions.
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Model assessment How well do I discriminate?

How well do I discriminate?

The real question for logits is how well do I distinguish 0s from 1s.
⇒ Several strategies.
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Model assessment How well do I discriminate?

Table comparison

The real question for logits is how well do I distinguish 0s from 1s.

▶ Table (e.g. 2× 2) with proportion of predicted against observed
values for 0s and 1s.

▶ It is χ2 distributed (ref. the Hosmer-Lemeshow test)

⇒ But how do I set the cut values (the τ)?
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Model assessment How well do I discriminate?

The ROC curve

The ROC lets the cut values vary and displays how wrong we are on
each side (true positive vs. false positive).

▶ A model with good predictions has a curve tending towards the upper
left corner.

▶ The actual cut value depends on our priorities

⇒ The graphic is useful in and of itself
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Model assessment How well do I discriminate?

The separation plot

The separation plot show how the density of observed ”successes”
increases as our predicted values increase.
⇒ Another graphic that is useful in and of itself
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