Event count models

Silje Synnøve Lyder Hermansen

2023-03-23

The dependent variable

The dependent variable

Count data is common in political science

Count data is common in political science

▶ Discrete: consists only in integers (0, 1, 2, ... no digits)

Count data is common in political science

- ▶ Discrete: consists only in integers (0, 1, 2, ... no digits)
- Bounded at zero, often long tail upwards.

Count data is common in political science

- ▶ Discrete: consists only in integers (0, 1, 2, ... no digits)
- Bounded at zero, often long tail upwards.

Count models: What are they good for?

Count models: What are they good for?

The data generating process allows us to

The data generating process allows us to

observe and count a number of events and

The data generating process allows us to

- observe and count a number of events and
- define a time frame or geographical space for the occurence(s)

The data generating process allows us to

- observe and count a number of events and
- define a time frame or geographical space for the occurence(s)
- \Rightarrow e.g. goals in a soccer game, number of meetings between decision makers, violent events, legislative proposals, etc.

Why not a binomial logistic regression?

These are indeed binary outcomes

Why not a binomial logistic regression?

These are indeed binary outcomes but we don't have information on the event level

Why not a binomial logistic regression?

These are indeed binary outcomes but we don't have information on the event level

 \Rightarrow Variables are on the exposure level; related to when (where) the events took place.

Count models: What are they good for?

Why not OLS?

Count models: What are they good for?

Why not OLS?

The variable could be approximated to a continuous measure but

it is bounded at zero, so predictions would be wrong

The variable could be approximated to a continuous measure but

ightharpoonup it is bounded at zero, so predictions would be wrong ightarrow same problems as logit

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is skewed. Some people add a constant and logtransform: log(y + 0.1)

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is skewed. Some people add a constant and logtransform: $log(y+0.1) \rightarrow but$ heteroskedasticity and non normal errors remain

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is skewed. Some people add a constant and logtransform: $log(y+0.1) \rightarrow but$ heteroskedasticity and non normal errors remain
- ⇒ We replace the normal distribution with another probability distribution

There are many count models

There are many count models

▶ Poisson model: (aka the A-plan) the base-line

There are many count models

- ▶ Poisson model: (aka the A-plan) the base-line
- ► Other models: (aka the B-plans) to address problems with the poisson

There are many count models

- ▶ Poisson model: (aka the A-plan) the base-line
- Other models: (aka the B-plans) to address problems with the poisson
 - quasi-poisson
 - negative binomial
 - zero-inflated model
 - hurdle model

The Poisson model

The Poisson model

- Recoding uses two pieces of information
 - **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)

- Recoding uses two pieces of information
 - **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
 - **Probability of event (** λ **):** Simply the logtransformed mean of events within that window

- Recoding uses two pieces of information
 - **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
 - **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$

- Recoding uses two pieces of information
 - **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
 - **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$
 - Probability of no event = $1 h\lambda$

- Recoding uses two pieces of information
 - **Exposure** (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
 - **Probability of event (** λ **):** Simply the logtransformed mean of events within that window
 - Probability of event = $h\lambda$
 - Probability of no event = $1 h\lambda$
- **Poisson distribution** maps the latent variable to our observed values by calculating the probability of events. $y \sim Pois(\lambda)$
- ⇒ Check out the [podcast] (http://lineardigressions.com/episodes/2020/3/1/better-know-a-distribution-the-poisson-distribution)

Formula

The equation the model estimates:

$$E(y_i) \equiv h\lambda_i = h \times \exp(\alpha + \beta \times x_i) \tag{1}$$

What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

▶ **Offset:** Move it into the equation but constrain parameter: $exp(\alpha + \beta \times x_i + 1 \times log(h_i))$

What to do with the exposure parameter?

$$E(y_i) \equiv {}^{\mathsf{h}}\lambda_i = {}^{\mathsf{h}} \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

▶ **Offset:** Move it into the equation but constrain parameter: $exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we don't see it in the BUTON$

What to do with the exposure parameter?

$$E(y_i) \equiv h \lambda_i = h \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

- ▶ **Offset:** Move it into the equation but constrain parameter: $exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we don't see it in the BUTON$
- **Estimate a parameter:** $exp(\alpha + \beta_1 \times x_i + \beta_2 \times log(h_i))$

What to do with the exposure parameter?

$$E(y_i) \equiv h \lambda_i = h \times \exp(\alpha + \beta \times x_i)$$
 (2)

Two strategies:

- ▶ **Offset:** Move it into the equation but constrain parameter: $\exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we \ don't \ see \ it \ in \ the \ BUTON$
- **Estimate a parameter:** $exp(\alpha + \beta_1 \times x_i + \beta_2 \times log(h_i))$
- \Rightarrow If the exposure is the same for all units, we set it to 1 and ignore it.

Interpretation is relatively easy with all count models

Interpretation is relatively easy with all count models

► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)

Interpretation is relatively easy with all count models

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- ▶ We back-transform (for interpretation): $exp(\lambda)$ is simply an approximation (with digits) of our counts!

Interpretation is relatively easy with all count models

- ► Recoding (for estimation): we logtransform the mean of the *y* (within x-values)
- ▶ We back-transform (for interpretation): $exp(\lambda)$ is simply an approximation (with digits) of our counts!

Interpretation is relatively easy

► **Recoding (for estimation):** we logtransform the mean of the *y* (within x-values)

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- **▶ Back-transform** (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- Back-transform (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts
 - Marginal effect of β : $exp(\beta)$ is multiplicative of predicted $\hat{\lambda}$

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- Back-transform (for interpretation):
 - Predicted value: $exp(\hat{\lambda})$ is simply an approximation (with digits) of our counts
 - ▶ Marginal effect of β : $exp(\beta)$ is multiplicative of predicted $\hat{\lambda} \to easy!$
 - ▶ NB: the log-transformation means that the model has an inbuilt interaction effect, so all effects are proportional
- ⇒ Make scenarios, predict, knock yourself out

Dispersion

Dispersion

The main assumption of the Poisson model

The model assumes equidispersion: The spread equals the mean

lackbox The y can be overdispersed, but not the $\hat{\lambda}$

The main assumption of the Poisson model

The model assumes equidispersion: The spread equals the mean

lacktriangle The y can be overdispersed, but not the $\hat{\lambda}
ightarrow$ as in OLS

The main assumption of the Poisson model

The model assumes equidispersion: The spread equals the mean

- lacktriangle The y can be overdispersed, but not the $\hat{\lambda}
 ightarrow$ as in OLS
- ⇒ The standerd errors will be too small

► Formal tests: Using residuals and significance tests.

- Formal tests: Using residuals and significance tests.
- Poissonness plot

- ► Formal tests: Using residuals and significance tests.
- Poissonness plot
- Rootograms

- ► Formal tests: Using residuals and significance tests.
- Poissonness plot
- Rootograms

Visual identification of overdispersion

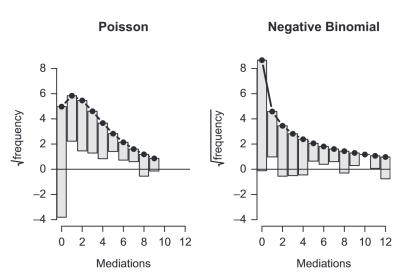


Figure 1: Hanging rootograms

Event count models

Reasons for overdispersion

The poisson process assumes that each event (count) is independent. Overdispersion may be a symptom that your events are related

- Address the symptoms, not the problem:
 - Unexplained (random) variance → quasipoisson
 - ightharpoonup Unexplained change in likelihood/functional form ightarrow negative binomial model
- Address the problem
 - Poor choice of variables → include more (also random intercepts)
 - Lack of exposure time
- Address the symptoms and potentially the problem:
 - Too many zeros
 - ightharpoonup Two separate processes generate our data ightharpoonup zeroinflated

Event count models

 \blacktriangleright We need to arrive at a certain threshold before positive counts arrive \rightarrow hurdle

Adressing overdispersion

The quasi-poisson model

 \blacktriangleright Adds an additional parameter, ϕ , to the variance estimation

The quasi-poisson model

 \triangleright Adds an additional parameter, ϕ , to the variance estimation \rightarrow similar to robust standard errors

The quasi-poisson model

lacktriangle Adds an additional parameter, ϕ , to the variance estimation o similar to robust standard errors

 $\Rightarrow \beta$ remains the same, standard errors are larger

The negative binomial model

The event is in fact generated by two processes

The negative binomial model

The event is in fact generated by two processes

- $\lambda_i = \exp(\beta \times x_i + 1 \times u_i)$
- $\mathbf{v} = exp(u_i)$ is in itself generated by a gamma distribution $v_i \sim f\Gamma(\alpha)$
- ▶ The latent variable is manipulated directly: the rate increases over y

The negative binomial model

The event is in fact generated by two processes

- $\lambda_i = \exp(\beta \times x_i + 1 \times u_i)$
- $\mathbf{v} = exp(u_i)$ is in itself generated by a gamma distribution $v_i \sim f\Gamma(\alpha)$
- ▶ The latent variable is manipulated directly: the rate increases over y

Substantially that two data generating processes are at work.

Substantially that two data generating processes are at work.

One producing zeros

Substantially that two data generating processes are at work.

- One producing zeros
- One producing (at least some) positive counts

Substantially that two data generating processes are at work.

- One producing zeros
- One producing (at least some) positive counts
- \Rightarrow We can model this in two parallel regressions with possibly different x or just an additional intercept.

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

▶ Hurdle part: A binomial logit where success is y > 0

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

- ▶ Hurdle part: A binomial logit where success is y > 0
- Count model: A zero-truncated poisson (or negative binomial) on all the positive counts.

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

- ▶ Hurdle part: A binomial logit where success is y > 0
- Count model: A zero-truncated poisson (or negative binomial) on all the positive counts.
- ⇒ Can accomodate under-dispersion too.

There are two sources of zeros, but only one of positive counts.

There are two sources of zeros, but only one of positive counts.

Zero-inflated part: A binomial logit where success is the "always zeros".

There are two sources of zeros, but only one of positive counts.

- Zero-inflated part: A binomial logit where success is the "always zeros".
- Count model: A poisson or negative binomial that is not truncated.

There are two sources of zeros, but only one of positive counts.

- Zero-inflated part: A binomial logit where success is the "always zeros".
- Count model: A poisson or negative binomial that is not truncated.
- \Rightarrow functions as a switch that is turned on/off after a threshold. The observation is then passed to the count-model group.

Recap on GLMs

Recap on GLMs

What are the criteria for model selection?

You can think of model selection as a set of criteria that should be met

Try out the model selection decision tree to see my mental map!

https://siljehermansen.github.io/teaching/choose_glm/