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Plan for the day

Plan for the day

P lecture: uncertainty and interpretation of linear models

P substantive interest: the size of the effect
> statistical significance: sources of variation/uncertainty

» chatGPT /chatTutor: how to use Al/LLMs in this class
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Introduction

Today's example

What is the effect of electoral systems on parliamentarians resource
allocation?

» Members of the European Parliament (MEPs) sit together in one
institution, but run for election under different rules

P expectation: more local investment among MEPs in
candidate-centered systems (compared to party-centered systems),
because of their need for a personal brand

» variables:

» y: number of constituency-level assistants employed
» x : candidate vs. party-centered systems
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Introduction Two views on linear regression

Two views on linear regression

Linear regression summarizes how the average values of a numer-
ical outcome variable vary over subpopulations defined by linear
functions of predictors. (Gelman and Hill, 2007, ch 3)

> comparison of means: descriptive approach to regression; makes
sense for categorical predictors

> relationship between variables: their correlation; more causal,
makes sense for numerical predictors
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Introduction Two views on linear regression

Regression as a comparison of means

at %>%
group_by(OpenList) %>%
reframe("mean_y" = mean(LocalAssistants)) %>%

ungroup %>%
mutate(diff = mean_y - lag(mean_y))

## # A tibble: 2 x 3
#4# OpenList mean_y diff

## <int> <dbl> <dbl>
## 1 0 2.47 NA
## 2 1 3.42 0.949

» MEPs from party-centered systems employ on average 2.47 local
assistants

» MEPs from candidate-centered systems employ on average 3.42 local
assistants.

» The difference is 0.95
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Introduction Two views on linear regression

Relationship between variables

mod <- lm(LocalAssistants ~ OpenList,
df)

summary (mod)

## Call:
## 1m(formula = LocalAssistants ~ OpenList, data = df)

## Residuals:
## Min 1Q Median 3Q Max
## -3.42 -2.42 -0.47 1.53 36.08

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.468 0.161  15.35 < 2e-16 **x*

## OpenList 0.949 0.234 4.05 5.7e-05 *xx*

## ———

## Signif. codes: O ’#**’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.” 0.1 ’ 1

## Residual standard error: 3.2 on 737 degrees of freedom

## Multiple R-squared: 0.0218, Adjusted R-squared: 0.0204
## F-statistic: 16.4 on 1 and 737 DF, p-value: 5.68e-05
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Introduction Two views on linear regression

Relationship between variables

summary (mod)

## Call:
## lm(formula = LocalAssistants ~ OpenList, data = df)

## Residuals:
## Min 1Q Median 3Q Max
## -3.42 -2.42 -0.47 1.53 36.08

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 2.468 0.161 15.35 < 2e-16 ***

## OpenList 0.949 0.234 4.05 5.7e-05 *xx*

## -

## Signif. codes: O ’#*%’ 0.001 ’**’ 0.01 ’*’ 0.05 .’ 0.1 > ’ 1

## Residual standard error: 3.2 on 737 degrees of freedom

## Multiple R-squared: 0.0218, Adjusted R-squared: 0.0204
## F-statistic: 16.4 on 1 and 737 DF, p-value: 5.68e-05

» MEPs from party-centered systems employ on average 2.47 local
assistants

» The difference is 0.95.

» MEPs from candidate-centered systems employ on average 2.47 +
0.95 = 3.42 local assistants.
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Silje Synngve Lyder Hermansen Intro to R 17 februar 2025 12 /49



Interpretation
Linear predictor

mod2 <- lm(LocalAssistants ~ OpenList + LaborCost,

df)
summary (mod2)
##
## Call:
## Im(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -4.49 -1.94 -0.41 1.08 35.00
##
## Coefficients:
## Estimate Std. Error t value Pr(>|tl)
## (Intercept) 4.1266 0.2861  14.42 < 2e-16 **x*
## OpenList 0.8288 0.2278 3.64 0.00029 #**x*
## LaborCost -0.0702 0.0102 -6.91 le-11 %%
## -
## Signif. codes: 0 ’#%x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.” 0.1’ > 1
##

## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14
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Interpretation

Stages of interpretaion

» hypothesis testing: direction and signficance

» marginal effect: the relative increase in your predictor
wo/accounting for the value of other preditors.

> prediction: fill in the equation for all predictors and calculate the
predicted effect

> first difference: fill in the equation for two scenarios and calculate
the difference in y

> effect plot: fill in the equation for all scenarios relevant to your
predictor

= as we move to GLMs, the importance of stages 3-6 becomes important
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Interpretation Hypothesis testing

Hypothesis testing
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Interpretation Hypothesis testing

Hypothesis testing

summary (mod2)

##

## Call:

## lm(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
##

## Residuals:

#4# Min 1Q Median 3Q Max

## -4.49 -1.94 -0.41 1.08 35.00

##

## Coefficients:

## Estimate Std. Error t value Pr(>ltl)

## (Intercept) 4.1266 0.2861 14.42 < 2e-16 **x

## OpenList 0.8288 0.2278 3.64 0.00029 *xx*

## LaborCost -0.0702 0.0102 -6.91 le-11 *%*

## -

## Signif. codes: O ’#%*’> 0.001 ’*x’ 0.01 ’%’ 0.05 ’.” 0.1 > * 1
##

## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14

» MEPs from candidate-centered systems have on average more local
assistants on their payroll
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Interpretation Marginal effect

Marginal effect
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Interpretation Marginal effect

Marginal effect
The relative increase in your predictor wo/accounting for the value
of other predictors.

summary (mod2)

##

## Call:

## Im(formula = LocalAssistants ~ OpenList + LaborCost, data = df)
##

## Residuals:

## Min 1Q Median 3Q Max

## -4.49 -1.94 -0.41 1.08 35.00

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 4.1266 0.2861 14.42 < 2e-16 ***

## OpenList 0.8288 0.2278 3.64 0.00029 #*x*

## LaborCost -0.0702 0.0102 -6.91 le-11 %k

## -

## Signif. codes: 0 ’#%x’ 0.001 ’*x’ 0.01 ’%> 0.05 ’.” 0.1’ > 1
##

## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14

» when labor cost increases with 1 unit (here 1000 euros), the average
number of assistants decreases by 0.07
e $000deHretscrease (increasantmol)) corresponds tolgafebruar 2025 1849



Interpretation Prediction

Prediction
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Interpretation Prediction

Prediction

We make predictions by filling in the equation
Yi = a+ BX

Yi=4.13 + 0.95 xX;
data (observed)

» variables: X and Y

> observations: i is a counter for the observations, refers to the ith
observation. i...N

parameters (estimated)

P> « intercept, the value of Y when X ==
» [ slope, the increase in Y when X increases by one unit
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Interpretation Prediction

Creating scenarios

You create a scenario when you fill in values in all the predictors (x).
Yi = a+ BX;

508 =4.13 + 095 x 1
In R:

# or

scenario <- data.frame(OpenList = 1)
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Interpretation Prediction

First difference

You create two scenarios and calculate the difference in y

Yi =a+ BX
scenario 1: 4.13 = 4.13 + 0.95 x 0 scenario 2: 5.08 = 4.13 +
0.95 x 1

In R:

x = c(0, 1)

# or

scenario <- data.frame(OpenList = c(0, 1))

= The first difference is 0.95.

Silje Synngve Lyder Hermansen Intro to R 17 februar 2025

22 /49



Interpretation Effect plot

Effect plot
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Interpretation Effect plot

Prediction

You create a bunch of scenarios covering the entire range of the
variable

In R:

#Scenario
scenario <- data.frame(OpenList = c(0),
LaborCost = min(df$LaborCost): max(df$LaborCost))

scenario[1:3,]

##  OpenList LaborCost

## 1 0 3.8
## 2 0 4.8
## 3 0 5.8
#Predict

scenario <- scenario ’>), mutate(preds = predict(mod2, newdata = scenario))
scenario$preds[1:3]

## 1 2 3
## 3.9 3.8 3.7

P The first difference is 0.95

= The first difference can be calculated for any two scenarios of your choice!
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Interpretation Effect plot

Plot

scenario %>%
geplot +
geom_line(aes(x = LaborCost,
y = preds))

preds
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Interpretation Effect plot
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Two sources of variation in the data

Two sources of variation in the data
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Two sources of variation in the data

Two sources of variation in the data

But are these effects statistically significant?

» Fundamental uncertainty: The natural randomness in outcomes,
even if the true parameters were known (Captured by residual
variance).

> Estimation uncertainty: How precisely are the coefficients
estimated? (Captured by the variance-covariance matrix)

= the uncertainty of your predictions depend on both
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Two sources of variation in the data Fundamental uncertainty

Fundamental uncertainty
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Two sources of variation in the data Fundamental uncertainty

Fundamental uncertainty

Y = a+ X1 + X2 + 0?
data (observed)

» variables: X and Y
> observations: i is a counter for the observations, refers to the ith
observation. i...N

parameters (estimated)

P> « intercept, the value of Y when X ==
» [ slope, the increase in Y when X increases by one unit
» o2 variance in the error term; Vo2 = standard deviation
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Two sources of variation in the data Fundamental uncertainty

Let’s rewrite

YNg(67O-2)
0204+6X;+02

> 0: the average value of y
» g(): the link function

The normal model
Yi ~ N(Mi’ 02)
i = + BX,' + 02

> (: mean predicted value
» N(): the normal distribution
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Two sources of variation in the data Fundamental uncertainty

What are the residuals?

We are always wrong in our predictions, but how wrong are we
(in-sample)?

df <- df %>} mutate(
#Predict in sample
preds = predict(mod2, newdata = .),
#Calculate the difference between expected and observed
residuals = LocalAssistants - preds
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Two sources of variation in the data Fundamental uncertainty

How to describe the residuals?

We describe the residuals by their spread (standard
deviation/residual standard error)

mean (df$residuals)

## [1] -9.8e-15
> mean: with an unbiased estimator, their average is 0

sd(df$residuals)

## [1] 3.1

» standard deviation: but their spread can be more or less high
> here, the average distance from their mean is is a staff size of 3.08
local assistants.

= residual standard error
Silje Synngve Lyder Hermansen Intro to R 17 februar 2025
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Two sources of variation in the data

Where is it reported?

summary (mod2)

##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:

Im(formula = LocalAssistants ~ OpenList

Residuals:
Min 1Q Median
-4.49 -1.94 -0.41

Coefficients:
Estimate
4.1266
0.8288
-0.0702

(Intercept)
OpenList
LaborCost

3Q Max
1.08 35.00

Std. Error t value
0.2861  14.42
0.2278 3.64
0.0102 -6.91

Signif. codes: 0 ’*¥x’ 0.001 ’*x’ 0.01

+ LaborCost, data = df)

Pr(>Itl)
< 2e-16 *x*
0.00029 *xx*
le-11 *xx

'%2 0.05 ’.° 0.1 7 ° 1

Residual standard error: 3.1 on 736 degrees of freedom
0.0814, Adjusted R-squared: 0.0789
2 and 736 DF, p-value: 2.69e-14

Multiple R-squared:
F-statistic: 32.6 on

summary (mod2) $sigma

##

[1] 3.1

= residual standard error is 3.08
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Two sources of variation in the data Fundamental uncertainty

Conclusion: fundamental error

» important for predictions and model statistics
» not really for the uncertainty of our estimation of our effect
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Two sources of variation in the data Estimation uncertainty

Estimation uncertainty
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Two sources of variation in the data Estimation uncertainty

Estimation uncertainty

» most research is about the effect of x on'y
P> so, we're interested in the uncertainty of 3
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Two sources of variation in the data Estimation uncertainty

The central limit theorem and sampling

A fiction: the assumptions underpinning the uncertainty of the
parameters

P assumption that data is a sample from a population

> we could sample many times

» we calculate the same parameter (e.g. mean, differences in means. .. )
in each sample

» they will vary, but will follow a normal distribution

= each parameter is a distribution with a mean and a standard deviation
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Two sources of variation in the data Estimation uncertainty

Standard errors

+ LaborCost, data = df)

Pr(>Itl)
< 2e-16 *x*
0.00029 *kx*
le-11 *xx

'%2 0.05 ’.° 0.1 ° ° 1

summary (mod2)

##

## Call:

## Im(formula = LocalAssistants ~ OpenList

##

## Residuals:

## Min 1Q Median 3Q Max

## -4.49 -1.94 -0.41 1.08 35.00

##

## Coefficients:

## Estimate Std. Error t value

## (Intercept) 4.1266 0.2861 14.42

## OpenList 0.8288 0.2278 3.64

## LaborCost -0.0702 0.0102 -6.91

## ———

## Signif. codes: O ’#%%’ 0.001 ’**x’ 0.01

##

## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
##

F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14

of MEPs: 0.95

> mean: average of all the differences in means between the two groups

» spread: the standard deviation of this distribution is 0.23

= a standard error is the standard deviation of a hypothetical distribution
(/Eaﬁam@tﬁrﬂ)r Hermansen

Intro to R 17 februar 2025 39 /49



Two sources of variation in the data Colinearities

Colinearities
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Two sources of variation in the data Colinearities

Colinearities

Regression parameters may be correlated

mat <-vcov(mod2)
mat

## (Intercept) OpenList LaborCost
## (Intercept) 0.0819 -0.02846 -0.00244
## OpenList -0.0285 0.05191 0.00018
## LaborCost -0.0024 0.00018 0.00010

» reported in the variance-covariance matrix
» diagonal: the variance of the parameter.

> variance in effect of electoral system: 0 = 0.05
» standard error in effect of electoral system: Vo2 = 0.23

> off-diagonal: the covariance of the parameters
» low correlation between labor cost and electoral system
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Two sources of variation in the data Colinearities

Estimate

King et al. (2000) make two points

> find interesting scenarios when you interpret
> estimate the uncertainty for the scenarios including

» standard error (diagonal)
» covariance (off-diagonal)

= the correlation between variables may mean higher or lower uncertainty
than only using the standard error
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Two sources of variation in the data Colinearities

Simulation

They do this using simulation

P set scenario for all predictors

» draw from the distribution of parameters
> make prediction
P> repeat many times
» extract the information and report
mean
median
mode

standard deviation
plot the distribution!

vVVyYVYYVYY
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Two sources of variation in the data Colinearities

Our class

We will see two ways of doing this in R

> ggeffects package: simulates scenarios for us and can be plotted
seamlessly — effect plots, coefplots and point predictions

> MASS package: the “manual” simulation from a multivariate normal

distribution using the variance-covariance matrix. — entire vector of
simulations; for other plots/purposes
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Study technique

Study technique
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Study technique

For this class

» learn by doing!
P all readings include R examples; code along!
> my R notebooks
» then play around with the concepts; also with your own data/former
exams

» dialogue with Al (ChatGPT, ChatTutor)
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Study technique

What to ask and not to ask chat for?

R codes

» dont ask for complex codes

» requires quirey competence on your end
» you don't learn

P ask it to annotate your scripts

P explain what each line means
» dissect all code chunks you find and ask
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Study technique

What to ask and not to ask chat for?
Statistics

» don't ask for a summary of the reading

P it's not necessarily what we will focus on
» you don't learn

» ask for definitions

P ask it to define key concepts you don't understand while you read
> rephrase definitions and ask it this is a good understanding

» match with your readings

» upload the PDF and ask specific questions
» ask for examples, possibly with R codes

» interpretation

» copy-paste your model output and ask for an explainer
P use descriptive statistics to find interesting scenarios, ask it to help you
find a plain English intuitive sentence
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Study technique

Your turn

Collaborate with a partner, upload the King et al PDF and dialogue with
ChatTutor and/or ChatGPT

>

vV v v Yy

v

Can you express in layman’s terms what a “standard deviation” of a variable
is?

How do you calculate it?
What are the “residuals” of the regression? How are they calculated?
What is a variance-covariance matrix?

What is the role of the variance-covariance matrix in the article (pdf) |
uploaded?

Can you explain what the covariance matrix is good for in this example?

What is the difference between fundamental and estimation uncertainty?

» What is the difference between expected and predicted values of Y and how

does this relate to the difference between fundamental and estimation
uncertainty? When am | interested in one rather than the other?
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