

Multilevel/hierarchical models: Overview

Silje Synnøve Lyder Hermansen

2025-02-25

Where are we in the course?

Recap from Monday

When observations are not i.i.d. (i.e. they share a group identity), we will often consider alternatives to the ordinary linear model

- ▶ negative take: the assumptions of the linear model are not met.
 - ▶ non-normal residuals,
 - ▶ heteroscedastic residuals
 - ▶ correlation between x and residuals
- ▶ positive take: we have variation that we want to leverage strategically
 - ▶ within-group variation
 - ▶ between-group variation
 - ▶ more correct estimation of the standard errors

⇒ *see this as an opportunity*

I pick my models as part of my research design

What are the most relevant correlations/variation given my theory?

- ▶ in experiments: you can create that variation and randomize the rest (cut out confounders)
- ▶ in observational studies: you'll have to "hunt" for the variation you want and control away the rest

Confounders

- ▶ Control variables that – if absent lead to omitted variable bias – satisfy three criteria:
 - ▶ z correlates with y
 - ▶ z correlates with x
 - ▶ z causes x and y (not intermediate/post-treatment)
- *even when 3 is not satisfied, it might be a sign of a common group identity (e.g. nationality)*
- ▶ Group identities: observations done in the same context share many potential confounders
 - ▶ you might kill several birds with one stone

The principle

The principle

We make the assumption that the residuals are drawn from a normal distribution

- ▶ **pooled models:** a single distribution

$$y_i = a + bx_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

- ▶ **hierarchical models:** add a hierarchy
 - ▶ assume groups are drawn from different distributions
 - ▶ their mean is drawn from a single distribution that “rules them all”

$$y_i = a + bx_i + \epsilon_{ji}$$

$$\epsilon_j \sim N(\alpha_j, \sigma_j^2)$$

$$\alpha_j \sim N(0, \sigma_\alpha^2)$$

Untangling the parameters/variation

This allows me to untangle different sources of variation

$$y_i = a + bx_i + \epsilon_{ji}$$

$$\epsilon_j \sim N(\alpha_j, \sigma_j^2)$$

$$\alpha_j \sim N(0, \sigma_\alpha^2)$$

- ▶ α_j : grouped mean of residuals: group intercept
- ▶ σ_α^2 : between-group variation
- ▶ σ_j^2 : group-level (within) variation

The promises of a hierarchical structure

This allows me to leverage different sources of variation

- ▶ leverage **within-group** variation:
 - ▶ by factoring out/control for between-group variation (σ_j^2)
- ▶ leverage **between-group** variation:
 - ▶ by running a second regression on the group means (α_α^2)
 - ▶ adjusts the standard errors
 - ▶ data augmentation: add variables from other sources that vary by group
 - ▶ predict out of sample even for new groups
- ▶ leverage **both sources** of variation
 - ▶ by borrowing from the more informative variation ("pooling"/"shrinkage")

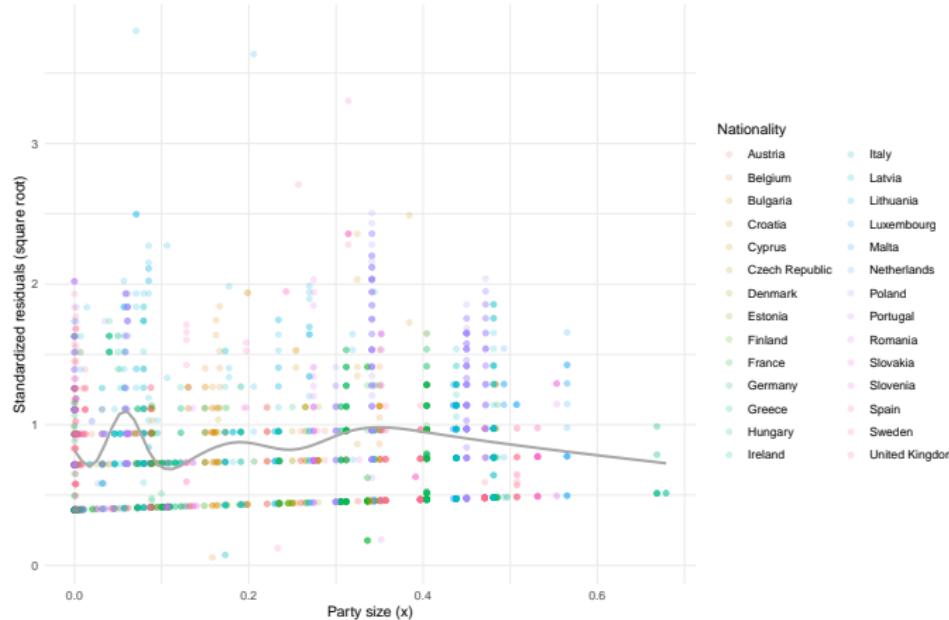
Labeling the errors: grouped residuals

Labeling the errors: grouped residuals

Our residuals have group identities that we can “label” as such.

The ghosts of our regression

Residuals correlate with my predictor

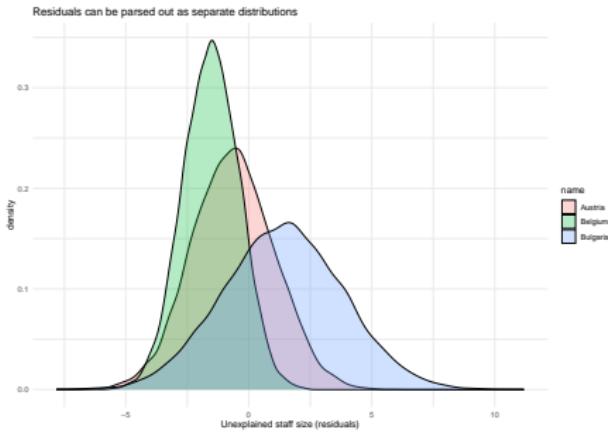


Group means and group-level variation

Our residuals have group identities that we can “label” as such.

- ▶ each group of residuals has a distribution with a mean and a spread

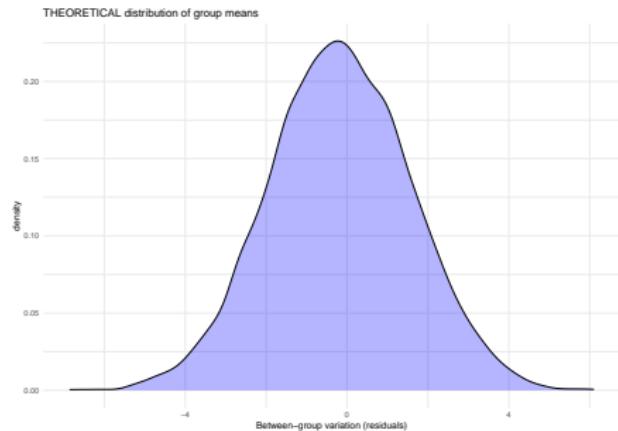
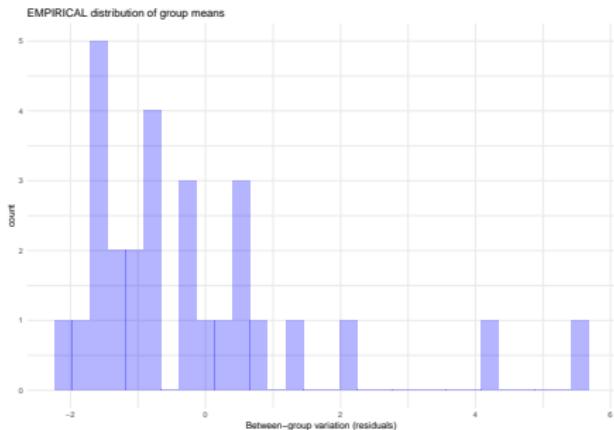
```
## # A tibble: 28 x 3
##   Nationality     y_bar_j sigma2_alpha
##   <chr>           <dbl>      <dbl>
## 1 Austria        -0.665     1.65
## 2 Belgium        -1.54      1.15
## 3 Bulgaria       1.41      2.44
## 4 Croatia        0.549     4.10
## 5 Cyprus          -0.253    1.89
## 6 Czech Republic -0.206    1.84
## 7 Denmark         -1.48     1.30
## 8 Estonia         -1.33     0.950
## 9 Finland         -1.47     0.919
## 10 France         -1.11     1.26
## # ... with 18 more rows
```



⇒ I can reconstruct their theoretical distribution by calculating the group mean and standard deviation

Between-group variation

The group means are drawn from a common normal distribution with a mean and a spread



⇒ I am treating the residuals as if they were a variable, so statistical theory can be applied

Varying-intercepts regression: within-group variation

Varying-intercepts regression: within-group variation

The random/varying-intercept model:

- ▶ a common slope for all predictors
- ▶ separate intercepts for all group identities
- ▶ a common intercept (grand mean)

From labelled errors to varying intercepts

Instead of hiding the groupings in the residuals, we can report them as a series of intercepts (i.e. report their group means)

$$y_i = a + bx_i + \alpha_j$$

$$\alpha_j \sim N(0, \sigma_\alpha^2)$$

- ▶ a : the **grand mean** (mean of α means)
- ▶ α_j : **varying intercepts** (deviations from this grand mean)

⇒ useful for interpretation in R

Varying-intercepts

Now, it is clear that I parse out (control for) between-group variation

- ▶ **within-group variation** the b coefficients report the effect of observation-level variables
- ▶ **group-level variation** is reported in the varying intercepts, it is the variation that:
 - ▶ has not been accounted for by my main effects
 - ▶ that can be attributed to group identities

Estimation in R: Varying national intercepts

Estimation in R: Varying national intercepts

Let's regress MEPs' investment in their district (y) on...

- ▶ x: their party's size in the national parliament (as a proxy for state funding).
- ▶ ... while controlling away between-national variation

Equation:

$$\text{Staff size} = a + b \times \text{Party size} + \alpha_{\text{Nationality}}$$

$$y_i = a + b x_i + \alpha_{ij}$$

Estimation:

```
library(lme4)
mod.ran.int <- lmer(y ~ x + (1|Nationality),
                      df)
```

Reading the R output

Reading the R output

```
summary(mod.ran.int)
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ x + (1 | Nationality)
##   Data: df
##
## REML criterion at convergence: 31355.2
##
## Scaled residuals:
##     Min      1Q  Median      3Q     Max
## -3.1127 -0.5387 -0.1435  0.3598 15.2357
##
## Random effects:
##   Groups      Name      Variance Std.Dev.
##   Nationality (Intercept) 3.125    1.768
##   Residual            5.240    2.289
##   Number of obs: 6948, groups: Nationality, 28
##
## Fixed effects:
##   Estimate Std. Error t value
## (Intercept)  2.6799    0.3386  7.915
## x          -1.6722    0.1678 -9.965
##
## Correlation of Fixed Effects:
##   (Intr)
## x -0.117
```

R refers to the residuals as "random effects"

σ^2_α : remaining **between-group variance**: 3.12

- ▶ standard deviation: 1.77
- ▶ the unexplained variation between groups

Residual: remaining **within-group variance**: 5.24

- ▶ standard deviation of within-group distribution: 2.29
- ▶ the unexplained variation within all groups

R refers to regression coefficients as "fixed effects"

a: **intercept/grand mean**: 2.68

- ▶ a hypothetical intercept for interpretation (mean of means)

b: **slope**: -1.67

- ▶ the marginal effect of party size (x)

Interpretation

Interpretation

Interpretation follows normal principles, but there are some complications:

a. we now have two intercepts per scenario:

- ▶ the grand mean (a): for focus on general effect of x
- ▶ the group-level mean (α_j): for description and prediction
- ▶ sum of the grand mean (a) and group-level mean (α_j): for prediction

b. all effects are linear

- ▶ so first-difference and marginal effects are the same

Interpreting marginal effects

The interpretation of the marginal effect is as with any linear model:

Table 1: Effect of state funding for parties on MEPs' local staff size

<i>Dependent variable:</i>	
	y
x	-1.672*** (0.168)
Constant	2.680*** (0.339)
Observations	6,948
Log Likelihood	-15,677.610
Akaike Inf. Crit.	31,363.210
Bayesian Inf. Crit.	31,390.600

Note:

* $p < 0.1$; ** $p < 0.05$; *** $p < 0.01$

⇒ A 10% decrease in the national party's seat share would lead every 6th MEP to compensate by hiring an additional local staffer.

Prediction

The varying intercepts are reported as deviations from the grand mean

```
fixef(mod.ran.int); ranef(mod.ran.int)
```

```
## (Intercept)      x
## 2.679887 -1.672226

##              (Intercept)
## Austria      -0.49518857
## Belgium     -1.52249566
## Bulgaria     1.54657524
## Croatia      0.68267309
## Cyprus       -0.05313986
## Czech Republic -0.10587832
```

Predicted local staff in Austria when national party is not in Parliament:

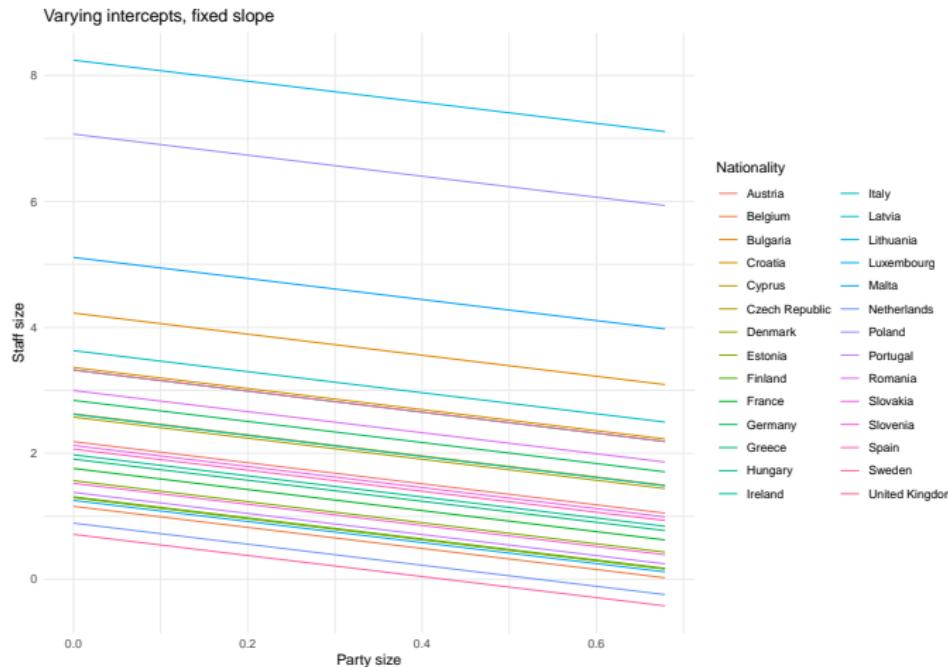
$$\blacktriangleright 2.68 + -0.5 \times 0 = 2.18$$

Predicted local staff in Austria when national party holds 10% of the seats

$$\blacktriangleright 2.68 + -0.5 + -1.67 \times 0.1 = 2.02$$

Visualization

Effect of x , the slope coefficient

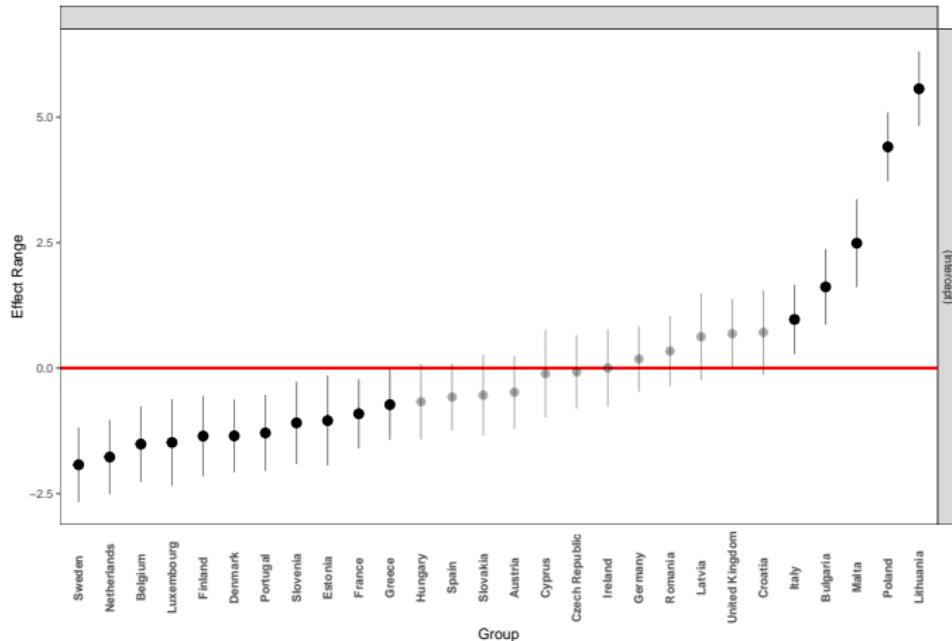


⇒ *the slope is constant, but the intercept changes across nationalities*

Visualization: as distributions

The intercepts are distributions in their own right

Distribution of national-level random intercepts



⇒ each varying intercept has a point estimate (regression coefficient) and a distribution. They vary around a normal distribution with mean of 0

Varying slopes, varying intercepts

Defintion

We can let the effect of z vary by group

$$y_i = a + b_1 x_i + c_j z_i + \alpha_j$$

- ▶ c_j : **varying slope** (the effect of z varies by group)
- ▶ α_j : **varying intercepts**
- ▶ we can rewrite to make this explicit

$$y_i = a + b x_i + \epsilon_{ij}$$

$$\epsilon_j \sim N(\alpha_j, \sigma_\alpha)$$

$$\alpha_j = \lambda_j + c_j z_j$$

- ▶ λ_j : **varying intercepts**

⇒ a series of regressions within the regression

Estimation in R

the estimation is done as if it was an interaction effect

- ▶ fixed-effects model with cross-level interaction

```
mod.ran.slope <- lm(y ~ x + ProxNatElection * Nationality, df)
```

- ▶ random-effects model with varying slope

```
mod.ran.slope <- lmer(y ~ x + (ProxNatElection | Nationality),
```

Interpretation

Marginal effects

We can read these coefficients as if they were from separate models

```
ranef(mod.ran.slope)
```

```
##                   (Intercept) ProxNatElection
## Austria           -0.3201686   0.001073577
## Belgium          -1.3944093   -0.018299157
## Bulgaria         1.8027887    0.086786759
## Croatia          0.9352286    0.058233060
## Cyprus            0.1020429   -0.003477477
## Czech Republic   0.1112017    0.024050889
```

MEPs from Austria hire on average 0.004 (= 0.001 * 4) assistants more immediately before an election compared to immediately after, while MEPs from Belgium hire on average 0.073 (= 0.018 * 4) fewer assistants.

- ▶ These are negligible marginal effects.

Prediction

The prediction is done per group, but follows normal rules

- ▶ two intercepts:
grand mean + group-level intercept
- ▶ one slope per group

```
fixef(mod.ran.slope); ranef(mod.ran.slope)
```

```
## (Intercept) x
## 2.513035 -1.691321

## (Intercept) ProxNatElection
## Austria -0.3201686 0.001073577
## Belgium -1.3944093 -0.018299157
## Bulgaria 1.8027887 0.086786759
## Croatia 0.9352286 0.058233060
## Cyprus 0.1020429 -0.003477477
## Czech Republic 0.1112017 0.024050889
```

Austria after election:

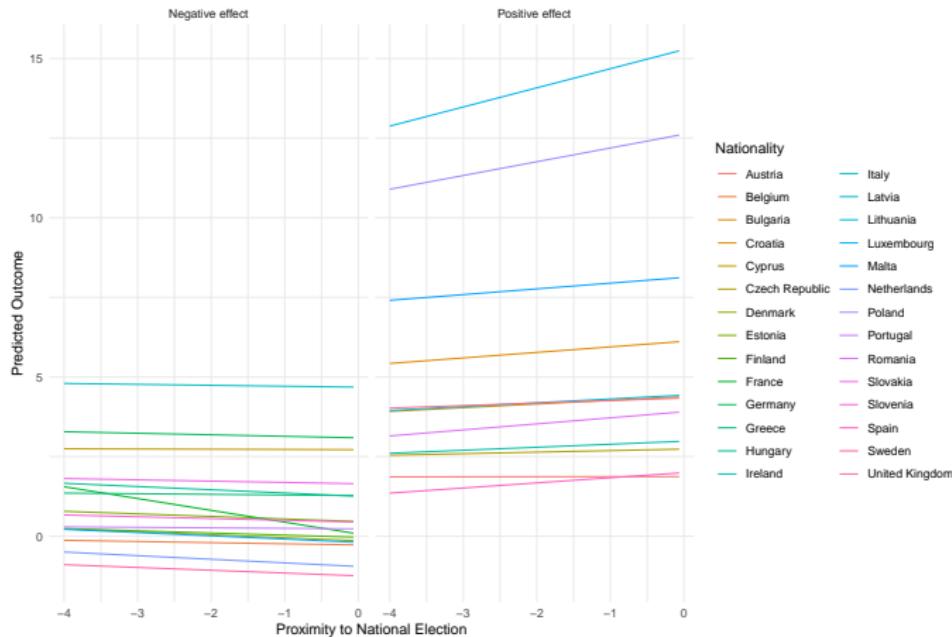
$$\blacktriangleright 2.51 + -0.32 + 0.001 \times -4 = 2.189$$

Austria before election:

$$\blacktriangleright 2.51 + -0.32 + 0.001 \times 0 = 2.193$$

Visualization

Varying slopes and intercepts: Effect of electoral calendar by nationality



Level-2 regression: between-group variation

Definition

Definition

We can think of the residuals/group intercepts as a variable in their own right

$$y_i = bx_i + \epsilon_{ji}$$

- ▶ they are generated by draws from J number of distributions:

$$\epsilon_{ji} \sim N(\alpha_j, \sigma_\alpha^2)$$

- ▶ ... and therefore we can model them

$$\alpha_j = a + dz_j$$

* a: a **single intercept** * d: a **single slope coefficient**

⇒ we run a second regression on the residuals

Implications

We explicitly model between-group variation

- ▶ z , the level-2 predictor only varies at the group level
 - ▶ standard errors for z reflect the number of groups
 - ▶ the more groups, the more the approach makes sense
- ▶ data augmentation
 - ▶ we can add information from other to the model
 - ▶ contextual elements
 - ▶ improves prediction

Estimation in R: Electoral system

Estimation in R: Electoral system

Let's add electoral system (z) as a predictor

- ▶ it never changes in a country (in this study)

R handles this automatically

- ▶ same data frame
 - ▶ all variables that don't vary within groups are regressed as a level 2
- ▶ coefficients reported the same way
- ▶ estimation of coefficients and standard errors is different

```
mod.two.levels <- lmer(y ~ x + z + (1|Nationality), df)
```

Reading the R output

Reading the R output

The R output looks exactly the same as for the varying-intercept model.

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ x + z + (1 | Nationality)
##   Data: df
##
## REML criterion at convergence: 31353.9
##
## Scaled residuals:
##     Min      1Q  Median      3Q     Max
## -3.1145 -0.5388 -0.1434  0.3599 15.2339
##
## Random effects:
##   Groups      Name      Variance Std.Dev.
##   Nationality (Intercept) 3.235    1.799
##   Residual            5.240    2.289
##   Number of obs: 6948, groups: Nationality, 28
##
## Fixed effects:
##   Estimate Std. Error t value
## (Intercept)  2.5268    0.6030  4.191
## x          -1.6719    0.1678 -9.962
## z           0.2263    0.7311  0.310
##
## Correlation of Fixed Effects:
##   (Intr) x
## x -0.077
## z -0.821  0.013
```

The level-2 regression coefficient appears as "fixed effects"

a: **grand mean:** 2.53

- ▶ the "mean of means"

d: **slope:** 0.23

- ▶ the marginal effect of electoral system (z)

Check the **change in between-group variance:**

- ▶ the between-group variance (σ_{α}^2 , 3.23) should normally decrease
- ▶ it is not the case here ($3.12 \leq 3.23$)

→ *increase in variance indicates "complexities" between levels (interactions)*

Correlation of Fixed Effects:

- ▶ negative correlation between predictor (z) and intercept (-0.82): high level of z correlates with low base-line value of y.

Pooling

Pooling

What is the difference between a fixed-effects and a random-effects model, then?

- ▶ the fixed-effects model only compares within groups

```
mod.fix <- lm(y ~ a + Nationality, df)
```

- ▶ the random-effects (hierarchical) model borrows information between and within groups → *pools*

```
mod.fix <- lmer(y ~ a + (1|Nationality), df)
```

⇒ *both are varying-intercepts models*

What is pooling?

The hierarchical model calculates a weighted average of between- and within-group variation for each coefficient

$$\frac{\frac{n_j}{\sigma_y^2} \bar{y}_j + \frac{1}{\sigma_\alpha^2} \bar{y}_{all}}{\frac{n_j}{\sigma_y^2} + \frac{1}{\sigma_\alpha^2}}$$

- ▶ the denominator is there to normalize $(\frac{n_j}{\sigma_y^2} + \frac{1}{\sigma_\alpha^2}) \rightarrow \text{ignore it}$
- ▶ \bar{y}_{all} : the pooled mean
 - ▶ its weight $(\frac{1}{\sigma_\alpha^2})$
 - ▶ σ_α^2 : between-group variation
- ▶ \bar{y}_j : the group mean
 - ▶ its weight $(\frac{n_j}{\sigma_y^2})$
 - ▶ n_j : size of the group (number of observations)
 - ▶ σ_y^2 : residual variation not explained by the between-group variation

The weights in pooling

The hierarchical model calculates a weighted average of between- and within-group variation for each coefficient

$$\frac{\frac{n_j}{\sigma_y^2} \bar{y}_j + \frac{1}{\sigma_\alpha^2} \bar{y}_{all}}{\frac{n_j}{\sigma_y^2} + \frac{1}{\sigma_\alpha^2}}$$

- ▶ σ_α^2 : as the **between-group variation** increases, the weight of the pooled mean decreases
- ▶ n_j : as **the size of the group** (number of observations) increases, the weight of the non-pooled (within-) group mean increases

What to do?

Sooo... what do I choose?

Condition	Fixed	Random	Advantage	Limitation
plenty of within-group variation	x		stringent comparison	no weighing of groups
		x	weighing by group size	groups should be distinct (between-group variation is high)
variables only vary by group	x		standard errors are corrected	fixed effects will be non-identified
mix of between- and within-group variation	x		pooling/borrows information	no idea where the info comes from
data augmentation/prediction	x		infers from group-level predictors	fixed effects don't perform out of sample

How many groups and how many observations?

Random/hierarchical model

- ▶ if you want level 2 variables:
 - ▶ **many groups** → *you run a second regression*
- ▶ if you want within-group variation:
 - ▶ **distinct groups** (large between-group variation, size matters less) → *similar to fixed-effects*
 - ▶ not distinct groups (little between-group variation) → *similar to pooled model*
- ▶ if you think the smaller groups are less representative
 - ▶ larger groups count more for within-group variation → *unbalanced panels*

Fixed-effects model

- ▶ only the observations with variation within the groups count towards the estimate → *your N may be deceptive*

Recap

Recap

Hierarchical models leverage variation according to the structure in the data (groupings)

- ▶ varying-intercepts models (fixed and random effects)
 - ▶ *one slope*, but control for group identities
- ▶ varying-intercept, varying slope (fixed and random effects)
 - ▶ one intercept and one slope *per group*,
- ▶ level-2 regression (random effects)
 - ▶ one slope per group predictor, but adjusts *standard errors*,
- ▶ pooling (all random effects models)
 - ▶ regression coefficients are a weighted average of between- and within-group variation

⇒ *Pick the variation you want, then pick the model you need.*