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Where are we in the course?

Recap from Monday

When observations are not i.i.d. (i.e. they share a group identity),
we will often consider alternatives to the ordinary linear model

▶ negative take: the assumptions of the linear model are not met.
▶ non-normal residuals,
▶ heteroscedastic residuals
▶ correlation between x and residuals

▶ positive take: we have variation that we want to leverage strategically
▶ within-group variation
▶ between-group variation
▶ more correct estimation of the standard errors

⇒ see this as an opportunity

Silje Synnøve Lyder Hermansen Multilevel/hierarchical models: Overview 2025-02-25 3 / 50



Where are we in the course?

I pick my models as part of my research design

What are the most relevant correlations/variation given my theory?

▶ in experiments: you can create that variation and randomize the rest
(cut out confounders)

▶ in observational studies: you’ll have to “hunt” for the variation you
want and control away the rest
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Where are we in the course?

Confounders

▶ Control variables that – if absent lead to omitted variable bias –
satisfy three criteria:
▶ z correlates with y
▶ z correlates with x
▶ z causes x and y (not intermediate/post-treatment)

→ even when 3 is not satisfied, it might be a sign of a common group
identity (e.g. nationality)

▶ Group identities: observations done in the same context share many
potential confounders
▶ you might kill several birds with one stone
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The principle

The principle
We make the assumption that the residuals are drawn from a normal
distribution

▶ pooled models: a single distribution

yi = a + bxi + ϵi

ϵi ∼ N(0, σ2)

▶ hierarchical models: add a hierarchy
▶ assume groups are drawn from different distributions
▶ their mean is drawn from a single distribution that “rules them all”

yi = a + bxi + ϵji

ϵj ∼ N(αj , σ2
j )

αj ∼ N(0, σ2
α)
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The principle

Untangling the parameters/variation

This allows me to untangle different sources of variation

yi = a + bxi + ϵji

ϵj ∼ N(αj , σ2
j )

αj ∼ N(0, σ2
α)

▶ αj : grouped mean of residuals: group intercept
▶ σ2

α: between-group variation
▶ σ2

j : group-level (within) variation
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The principle

The promises of a hierarchical structure

This allows me to leverage different sources of variation

▶ leverage within-group variation:
▶ by factoring out/control for between-group variation (σ2

j )
▶ leverage between-group variation:

▶ by running a second regression on the group means (α2
α)

▶ adjusts the standard errors
▶ data augmentation: add variables from other sources that vary by group
▶ predict out of sample even for new groups

▶ leverage both sources of variation
▶ by borrowing from the more informative variation

(“pooling”/“shrinkage”)
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The principle Labeling the errors: grouped residuals
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The principle Labeling the errors: grouped residuals

Labeling the errors: grouped residuals
Our residuals have group identities that we can “label” as such.
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Residuals correlate with my predictor

The ghosts of our regression
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The principle Labeling the errors: grouped residuals

Group means and group-level variation

Our residuals have group identities that we can “label” as such.

▶ each group of residuals has a distribution with a mean and a spread

## # A tibble: 28 x 3
## Nationality y_bar_j sigma2_alpha
## <chr> <dbl> <dbl>
## 1 Austria -0.665 1.65
## 2 Belgium -1.54 1.15
## 3 Bulgaria 1.41 2.44
## 4 Croatia 0.549 4.10
## 5 Cyprus -0.253 1.89
## 6 Czech Republic -0.206 1.84
## 7 Denmark -1.48 1.30
## 8 Estonia -1.33 0.950
## 9 Finland -1.47 0.919
## 10 France -1.11 1.26
## # i 18 more rows 0.0
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Residuals can be parsed out as separate distributions

⇒ I can reconstruct their theoretical distribution by calculating the group
mean and standard deviation
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The principle Labeling the errors: grouped residuals

Between-group variation

The group means are drawn from a common normal distribution
with a mean and a spread
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⇒ I am treating the residuals as if they were a variable, so statistical
theory can be applied
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Varying-intercepts regression: within-group variation
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Varying-intercepts regression: within-group variation

Varying-intercepts regression: within-group variation

The random/varying-intercept model:

▶ a common slope for all predictors
▶ separate intercepts for all group identities
▶ a common intercept (grand mean)
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Varying-intercepts regression: within-group variation

From labelled errors to varying intercepts

Instead of hiding the groupings in the residuals, we can report them as a
series of intercepts (i.e. report their group means)

yi = a + bxi + αj

αj ∼ N(0, σ2
α)

▶ a: the grand mean (mean of α means)
▶ αj : varying intercepts (deviations from this grand mean)

⇒ useful for interpretation in R
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Varying-intercepts regression: within-group variation

Varying-intercepts

Now, it is clear that I parse out (control for) between-group
variation

▶ within-group variation the b coefficients report the effect of
observation-level variables

▶ group-level variation is reported in the varying intercepts, it is the
variation that:
▶ has not been accounted for by my main effects
▶ that can be attributed to group identities
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Varying-intercepts regression: within-group variation Estimation in R: Varying national intercepts
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Varying-intercepts regression: within-group variation Estimation in R: Varying national intercepts

Estimation in R: Varying national intercepts

Let’s regress MEPs’ investment in their district (y) on. . .

▶ x: their party’s size in the national parliament (as a proxy for state funding).
▶ . . . while controlling away between-national variation

Equation:

Staff size = a + b × Party size + αNationality

yi = a + bxi + αij

Estimation:
library(lme4)
mod.ran.int <- lmer(y ~ x + (1|Nationality),

df)
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Varying-intercepts regression: within-group variation Reading the R output

Reading the R output
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Varying-intercepts regression: within-group variation Reading the R output

Reading the R output

summary(mod.ran.int)

## Linear mixed model fit by REML [’lmerMod’]
## Formula: y ~ x + (1 | Nationality)
## Data: df
##
## REML criterion at convergence: 31355.2
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1127 -0.5387 -0.1435 0.3598 15.2357
##
## Random effects:
## Groups Name Variance Std.Dev.
## Nationality (Intercept) 3.125 1.768
## Residual 5.240 2.289
## Number of obs: 6948, groups: Nationality, 28
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.6799 0.3386 7.915
## x -1.6722 0.1678 -9.965
##
## Correlation of Fixed Effects:
## (Intr)
## x -0.117

R refers to the residuals as “random effects”

σ2
α: remaining between-group variance: 3.12

▶ standard deviation: 1.77
▶ the unexplained variation between groups

Residual: remaining within-group variance: 5.24
▶ standard deviation of within-group distribution: 2.29
▶ the unexplained variation within all groups

R refers to regression coefficients as “fixed effects”

a: intercept/grand mean: 2.68
▶ a hypothetical intercept for interpretation (mean of

means)
b: slope: -1.67

▶ the marginal effect of party size (x)
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Varying-intercepts regression: within-group variation Interpretation

Interpretation
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Varying-intercepts regression: within-group variation Interpretation

Interpretation

Interpretation follows normal principles, but there are some complications:

a. we now have two intercepts per scenario:

▶ the grand mean (a): for focus on general effect of x
▶ the group-level mean (αj): for description and prediction
▶ sum of the grand mean (a) and group-level mean (αj): for prediction

b. all effects are linear

▶ so first-difference and marginal effects are the same
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Varying-intercepts regression: within-group variation Interpretation

Interpreting marginal effects
The interpretation of the marginal effect is as with any linear model:

Table 1: Effect of state funding for parties on MEPs’ local staff size

Dependent variable:
y

x −1.672∗∗∗

(0.168)

Constant 2.680∗∗∗

(0.339)

Observations 6,948
Log Likelihood −15,677.610
Akaike Inf. Crit. 31,363.210
Bayesian Inf. Crit. 31,390.600

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

⇒ A 10% decrease in the national party’s seat share would lead every 6th
MEP to compensate by hiring an additional local staffer.
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Varying-intercepts regression: within-group variation Interpretation

Prediction

The varying intercepts are reported as deviations from the grand mean

fixef(mod.ran.int); ranef(mod.ran.int)

## (Intercept) x
## 2.679887 -1.672226

## (Intercept)
## Austria -0.49518857
## Belgium -1.52249566
## Bulgaria 1.54657524
## Croatia 0.68267309
## Cyprus -0.05313986
## Czech Republic -0.10587832

Predicted local staff in Austria when national party is not in
Parliament:

▶ 2.68 + -0.5 × 0 = 2.18

Predicted local staff in Austria when national party holds
10% of the seats

▶ 2.68 + -0.5 + -1.67 × 0.1 = 2.02
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Varying-intercepts regression: within-group variation Interpretation

Visualization
Effect of x, the slope coefficient
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Varying intercepts, fixed slope

⇒ the slope is constant, but the intercept changes across nationalities
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Varying-intercepts regression: within-group variation Interpretation

Visualization: as distributions
The intercepts are distributions in their own right
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⇒ each varying intercept has a point estimate (regression coefficient) and a
distribution. They vary around a normal distribution with mean of 0
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Varying slopes, varying intercepts

Varying slopes, varying intercepts
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Varying slopes, varying intercepts

Defintion
We can let the effect of z vary by group

yi = a + b1xi + cjzi + αj

▶ cj : varying slope (the effect of z varies by group)
▶ αj : varying intercepts
▶ we can rewrite to make this explicit

yi = a + bxi + ϵij

ϵj ∼ N(αj , σα)

αj = λj + cjzj

▶ λj : varying intercepts

⇒ a series of regressions within the regression
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Varying slopes, varying intercepts

Estimation in R

the estimation is done as if it was an interaction effect

▶ fixed-effects model with cross-level interaction

mod.ran.slope <- lm(y ~ x + ProxNatElection * Nationality, df)

▶ random-effects model with varying slope

mod.ran.slope <- lmer(y ~ x + (ProxNatElection | Nationality), df)
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Varying slopes, varying intercepts Interpretation

Interpretation
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Varying slopes, varying intercepts Interpretation

Marginal effects

We can read these coefficients as if they were from separate models

ranef(mod.ran.slope)

## (Intercept) ProxNatElection
## Austria -0.3201686 0.001073577
## Belgium -1.3944093 -0.018299157
## Bulgaria 1.8027887 0.086786759
## Croatia 0.9352286 0.058233060
## Cyprus 0.1020429 -0.003477477
## Czech Republic 0.1112017 0.024050889

MEPs from Austria hire on average 0.004 (= 0.001 * 4)
assistants more immediately before an election compared to
immediately after, while MEPs from Belgium hire on average
0.073 (= 0.018 * 4) fewer assistants.

▶ These are negligible marginal effects.
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Varying slopes, varying intercepts Interpretation

Prediction

The prediction is done per group, but follows normal rules

▶ two intercepts:
grand mean + group-level intercept

▶ one slope per group

fixef(mod.ran.slope); ranef(mod.ran.slope)

## (Intercept) x
## 2.513035 -1.691321

## (Intercept) ProxNatElection
## Austria -0.3201686 0.001073577
## Belgium -1.3944093 -0.018299157
## Bulgaria 1.8027887 0.086786759
## Croatia 0.9352286 0.058233060
## Cyprus 0.1020429 -0.003477477
## Czech Republic 0.1112017 0.024050889

Austria after election:

▶ 2.51 + −0.32 + 0.001 × −4 = 2.189

Austria before election:

▶ 2.51 + −0.32 + 0.001 × 0 = 2.193
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Varying slopes, varying intercepts Interpretation

Visualization
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Varying slopes and intercepts: Effect of electoral calendar by nationality
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Level-2 regression: between-group variation

Level-2 regression: between-group variation

Silje Synnøve Lyder Hermansen Multilevel/hierarchical models: Overview 2025-02-25 35 / 50



Level-2 regression: between-group variation Definition

Definition
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Level-2 regression: between-group variation Definition

Definition
We can think of the residuals/group intercepts as a variable in their own
right

yi = bxi + ϵji

▶ they are generated by draws from J number of distributions:

ϵji ∼ N(αj , σ2
α)

▶ . . . and therefore we can model them

αj = a + dzj

* a: a single intercept * d: a single slope coefficient

⇒ we run a second regression on the residuals
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Level-2 regression: between-group variation Definition

Implications

We explicitly model between-group variation

▶ z, the level-2 predictor only varies at the group level
▶ standard errors for z reflect the number of groups
▶ the more groups, the more the approach makes sense

▶ data augmentation
▶ we can add information from other to the model
▶ contextual elements
▶ improves prediction
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Level-2 regression: between-group variation Estimation in R: Electoral system

Estimation in R: Electoral system

Silje Synnøve Lyder Hermansen Multilevel/hierarchical models: Overview 2025-02-25 39 / 50



Level-2 regression: between-group variation Estimation in R: Electoral system

Estimation in R: Electoral system

Let’s add electoral system (z) as a predictor

▶ it never changes in a country (in this study)

R handles this automatically

▶ same data frame
▶ all variables that don’t vary within groups are regressed as a level 2

▶ coefficients reported the same way
▶ estimation of coefficients and standard errors is different

mod.two.levels <- lmer(y ~ x + z + (1|Nationality), df)
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Level-2 regression: between-group variation Reading the R output

Reading the R output
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Level-2 regression: between-group variation Reading the R output

Reading the R output
The R output looks exactly the same as for the varying-intercept
model.

## Linear mixed model fit by REML [’lmerMod’]
## Formula: y ~ x + z + (1 | Nationality)
## Data: df
##
## REML criterion at convergence: 31353.9
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -3.1145 -0.5388 -0.1434 0.3599 15.2339
##
## Random effects:
## Groups Name Variance Std.Dev.
## Nationality (Intercept) 3.235 1.799
## Residual 5.240 2.289
## Number of obs: 6948, groups: Nationality, 28
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 2.5268 0.6030 4.191
## x -1.6719 0.1678 -9.962
## z 0.2263 0.7311 0.310
##
## Correlation of Fixed Effects:
## (Intr) x
## x -0.077
## z -0.821 0.013

The level-2 regression coefficient appears as “fixed effects”

a: grand mean: 2.53
▶ the “mean of means”

d : slope: 0.23
▶ the marginal effect of electoral system (z)

Check the change in between-group variance:
▶ the between-group variance (σ2

α, 3.23) should
normally decrease

▶ it is not the case here (3.12 ≤ 3.23)
→ increase in variance indicates “complexities” between
levels (interactions)

Correlation of Fixed Effects:
▶ negative correlation between predictor (z) and

intercept (-0.82): high level of z correlates with low
base-line value of y.
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Pooling

Pooling
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Pooling

Pooling

What is the difference between a fixed-effects and a random-effects
model, then?

▶ the fixed-effects model only compares within groups

mod.fix <- lm(y ~ a + Nationality, df)

▶ the random-effects (hierarchical) model borrows information between
and within groups → pools

mod.fix <- lmer(y ~ a + (1|Nationality), df)

⇒ both are varying-intercepts models
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Pooling

What is pooling?
The hierarchical model calculates a weighted average of between-
and within-group variation for each coefficient

nj
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y
ȳj + 1

σ2
α

ȳall
nj
σ2

y
+ 1

σ2
α

▶ the denominator is there to normalize ( nj
σ2

y
+ 1

σ2
α

) → ignore it
▶ ¯yall : the pooled mean

▶ its weight ( 1
σ2

α
)

▶ σ2
α: between-group variation

▶ ȳj : the group mean
▶ its weight ( nj

σ2
y
)

▶ nj : size of the group (number of observations)
▶ σ2

y : residual variation not explained by the between-group variation
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Pooling

The weights in pooling

The hierarchical model calculates a weighted average of between-
and within-group variation for each coefficient

nj
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ȳj + 1

σ2
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ȳall
nj
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y
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σ2
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▶ σ2
α: as the between-group variation increases, the weight of the

pooled mean decreases
▶ nj : as the size of the group (number of observations) increases, the

weight of the non-pooled (within-) group mean increases
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Pooling

What to do?

Sooo. . . what do I choose?

Condition Fixed Random Advantage Limitation

plenty of within-group
variation

x stringent comparison no weighing of groups

x weighing by group size groups should be distinct
(between-group variation is
high)

variables only vary by group x standard errors are corrected fixed effects will be
non-identified

mix of between- and
within-group variation

x pooling/borrows information no idea where the info comes
from

data augmentation/prediction x infers from group-level
predictors

fixed effects don’t perform
out of sample
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Pooling

How many groups and how many observations?
Random/hierarchical model

▶ if you want level 2 variables:
▶ many groups → you run a second regression

▶ if you want within-group variation:
▶ distinct groups (large between-group variation, size matters less) →

similar to fixed-effects
▶ not distinct groups (little between-group variation) → similar to pooled

model
▶ if you think the smaller groups are less representative

▶ larger groups count more for within-group variation → unbalanced
panels

Fixed-effects model

▶ only the observations with variation within the groups count towards
the estimate → your N may be deceptive
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Recap

Recap
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Recap

Recap

Hierarchical models leverage variation according to the structure in
the data (groupings)

▶ varying-intercepts models (fixed and random effects)
▶ one slope, but control for group identities

▶ varying-intercept, varying slope (fixed and random effects)
▶ one intercept and one slope per group,

▶ level-2 regression (random effects)
▶ one slope per group predictor, but adjusts standard errors,

▶ pooling (all random effects models)
▶ regression coefficients are a weighted average of between- and

within-group variation

⇒ Pick the variation you want, then pick the model you need.
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