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library(dplyr); library(ggplot2)
theme_set (theme_minimal())
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Before we start  Where are we?

Assumptions of the linear model

Linear models (OLS) rely on two assumptions that are often violated

> observations are independent and identically distributed (iid)

> outcomes are continuous and unbounded (next 7 weeks)

= this class: alternative models when these are not satisfied.
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Take 1: A latent variable approach to GLMs

Many outcomes are not continuous

» OLS assumes a continuous dependent variable. But many
phenomena in the social sciences are not like that.

» Vote choice, civil conflict onset, legislator performance, court rulings,
time to compliance, etc.

= OK. Let’s strategize.
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Take 1: A latent variable approach to GLMs

All regressions are linear(ized)

» The basic formulation in any regression describes a linear
relationship between x; and y;:

yi=a+ Bxi+e€

» When x; increases with one unit, y; increases with 3 units.
» If that relationship is not linear, we have to make it so:

» by recoding the x;

» by recoding the y; — we linearize.
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Take 1: A latent variable approach to GLMs

A latent variable

» A linear(ized) model requires a continuous dependent variable.
» Imagine we are interested in an unobservable variable, z;, that describes

our propensity towards something.

» Above a certain threshold (7) of z;, observability kicks in and we can
see y;.

> The regression coefficients (5) in GLMs describe the z ~ x relationship.

=- The latent variable approach is useful when interpreting the results.
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Take 1: A latent variable approach to GLMs

Example: The binomial model

» The logit model is a perfect example:
1 ifz>r
Yi=

0 ifZ,'ST

» The probability (z;) of an outcome y; is continuous.
» Above a certain probability (7), we observe a positive outcome

(vi=1).

= But how do we set the value of 77
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Take 1: A latent variable approach to GLMs From latent variable to discrete outcomes
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Take 1: A latent variable approach to GLMs From latent variable to discrete outcomes

Statistical theory helps us describe how z; leads to y;.

> What kind of process generated our data? — Data Generating
Process (DGP)

» How can we best describe it? — choice of probability distribution
(in GLM)
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Take 1: A latent variable approach to GLMs From latent variable to discrete outcomes

The three components of GLMs

> When fitting the model, we need to make three choices:

» A linear predictor: (Bx;.

> A probability distribution: they're all in the exponential family.

» A recoding strategy.
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Take 1: A latent variable approach to GLMs From latent variable to discrete outcomes

In R this translates to two additional arguments compared
to your usual OLS.

» A linear predictor: — (y = x).
» A probability distribution: — (family =).
» A recoding strategy — (1link =).
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Take 1: A latent variable approach to GLMs From latent variable to discrete outcomes

The three components of GLMs

> In R, this translates to two additional arguments compared to
your usual OLS:
» A linear predictor: — (y \sim x).
> A probability distribution: — (family =)
> A recoding strategy — (1link =).

# Ezample R code for a GLM model
mod <- glm(y ~ x,
data = data,
family = binomial(link = "logit"))
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Take 1: A latent variable approach to GLMs From latent variable to discrete outcomes

Latent variable approach for interpretation

» The latent variable approach is useful when interpreting results.

» That's when we map from the latent variable to the observed
outcome.

= When estimating the model, we have to go the other way round.
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Take 2: Recoding from binary to continuous

Take 2: Recoding from binary to continuous

Silje Synngve Lyder Hermansen Models of outcome and choice: The logit model 18 /67



Take 2: Recoding from binary to continuous How do we get from a binary to a continuous variable?

How do we get from a binary to a continuous variable?

Silje Synngve Lyder Hermansen Models of outcome and choice: The logit model 19 /67



Take 2: Recoding from binary to continuous How do we get from a binary to a continuous variable?

Data structure

We can only observe the outcome produced by the latent variable.
There are two data structures for binary data:

P classes of observations: e.g.: rats in a cage, coin tosses...

> case-based: e.g.: legislator votes, Brexit...
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Take 2: Recoding from binary to continuous How do we get from a binary to a continuous variable?

Data structure

We can only observe the outcome produced by the latent variable.

There are two data structures for binary data:

> classes of observations: e.g.: rats in a cage, coin tosses... — the
closest to the latent continuous variable.

P> case-based: e.g.: legislator votes, Brexit...

= we know the number of successes and trials in a cage/class/stratum.

That's our starting point.
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Take 2: Recoding from binary to continuous ~ The binomial distribution: successes and failures
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Take 2: Recoding from binary to continuous The binomial distribution: successes and failures

The binomial distribution: successes and failures

How does the binomial distribution map descrete outcomes (0 or 1)
to something continuous?

> let's start with the intercept-only model (no predictors, just a
base-line probability)
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Take 2: Recoding from binary to continuous The binomial distribution: successes and failures

Let's examplify with rats

A probability distribution describes the probability of all potential
outcomes

» We kept a 1000 rats in a cage and a number of them died (failure)
while others are still alive (success).

= How can we model this?
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Take 2: Recoding from binary to continuous The binomial distribution: successes and failures

Step 1: describe all potential outcomes

> Let's consider a series of 1000 potential trials (cages) where we let
the successes go from complete failure (success = 0) to complete
success (success = 1000)

trials <- 1000
success <- 0:1000
failure <- trials - success

= We describe all potential outcomes
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Take 2: Recoding from binary to continuous The binomial distribution: successes and failures

Step 2: we calculate the odds

We calculate the odds of surviving in a cage in a 1000 cages

> compare successes with failures S—
by dividing one by the other

odds <- success/failure

L

= A continuous outcome from 0 to + infinity
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Take 2: Recoding from binary to continuous ~ The binomial distribution: successes and failures

Step 3: we log-transform the odds

We logtransform the odds of surviving in a cage in a 1000 cages

> use the logarithmic ——
transformation: natural
logarithm (e) of the odds

logodds <- log(odds)

logouds.

= A continuous, bell-shaped outcome from - to + infinity

Silje Synngve Lyder Hermansen Models of outcome and choice: The logit model

27 /67



Take 2: Recoding from binary to continuous The binomial distribution: successes and failures

The recoded dependent variable has a linear relationship to
X

This, we can run regressions on!

» the outcome variable in logistic regressions is logodds
P> ... meaning the regression coefficients are reported on that scale

= ... but they're not easy to understand, so we backtransform when
interpreting
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Take 2: Recoding from binary to continuous The binomial distribution: successes and failures

The famous S shape (sigmoid shape)

We can plot the logodds of success against the number of successes
or their probability (it’s the same).

The sigmoid function: maps probabilies to logodds

» we can go back and forth
between logodds and
successes/probabilities

» log-transformation:
» forces outcome to be
between 0 and 1
» residuals are homoscedastic
(constant variance)
= curve “flattens out” when closing up to the 0 or 1 boundary, so
relationship is non-linear
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Take 2: Recoding from binary to continuous The binomial distribution: successes and failures

Probability distributions for binary variables

There are two, closely related probability distributions for binary
outcomes:

» The binomial distribution: B(n, p)

> p is the probability of success tells where on the x-axis (trials) the
distribution is placed.

» nis the number of trials and defines the precision (spread) of the
distribution.

» The Bernoulli distribution: Ber(p): when we only have only one trial
B(1,p) = Ber(p).

» Data structure: When we have data (covariates) on the event level,

we use the case based approach.
P> yis coded as 0 or 1, R recodes
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Take 2: Recoding from binary to continuous Why all the fuzz? Why not OLS?
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Take 2: Recoding from binary to continuous ~ Why all the fuzz? Why not OLS?

Distributions in OLS and maximum likelihood

» In OLS: The residuals must be normally distributed (but not the y;)
» In ML: The z; must follow a known probability distribution.

= This what allows us to translate the latent variable to probable
outcomes.
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Take 2: Recoding from binary to continuous ~ Why all the fuzz? Why not OLS?

What happens if | run a linear model on binary outcomes?

» The model risks predicting out of the possible boundaries

» Predictions are wrong.
> Regression coefficients are wrong.

» Standard errors are wrong.
P The relationship between x; and y; is constant across all values.

= This last element has a bearing for the interpretation.
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Take 2: Recoding from binary to continuous ~ Why all the fuzz? Why not OLS?

Example

What is the likelihood that a judge at the Court of Justice of the

European Union is replaced by another judge at the end of their mandate?

Table 1: Probability of a judge to exit after their mandate ended

Dependent variable:

y
OoLS logistic
1) (2
Political distance between governments 0.308*** 1.472%%*
(0.069) (0.378)
Constant 0.165*** —1.548%**
(0.036) (0.210)
Observations 251 251
R? 0.074
Adjusted R? 0.070
Log Likelihood —138.038
Akaike Inf. Crit. 280.076

Residual Std. Error
F Statistic

0.429 (df = 249)
19.834*** (df = 1; 249)

Note:

Silje Synngve Lyder Hermansen

*p<0.1; **p<0.05; ***p<0.01
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Take 2: Recoding from binary to continuous Why all the fuzz? Why not OLS?

Let's back-transform and plot predictions

If we create scenarios for labor cost, we see that at the fringes, the two
curves differ.

Predictions of the logit vs. the linear model
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Interpretation: So... what did | find?
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Interpretation: So... what did | find? Back and forth: Logistic and logit transformation

The logit transformation

When we go from outcomes to latent variable we use the logit
transformation. b

logit(p) = Iog(ﬂ) (1)

= This what R does when estimating our model
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Interpretation: So... what did | find? Back and forth: Logistic and logit transformation

The logistic transformation

When we go from the latent variable to outcomes we use the
logistic transformation.

o exp(logodds) 1
logit~(logodds) = =
ogit™ " (logodds) 1 + exp(logodds) 1+ exp(—logodds)

= This what we do when interpreting our model
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Interpretation: So... what did | find? My three stages of interpretation
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Interpretation: So... what did | find? My three stages of interpretation

My three stages of interpretation

| go through tree stages of interpretation by first setting two
scenarios (or more)

» Marginal effects from regression table : half-way scenario (change in
x)
» Logodds: check direction and significance (in text).

» Odds ratio (for large coefficients) and percentage change (for smaller
coefficients).

» First-difference: full-fledged scenario (all x-s) to make predictions with
point estimates (in text)

» Predictions: a bunch of full-fledged scenarios with uncertainty
(graphics).
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Interpretation: So... what did | find? My three stages of interpretation

The regression table: marginal effects

| interpret the regression coefficient itself

» Change in logodds: check direction and significance.

» QOdds ratio (for large coefficients) and percentage change (for smaller
coefficients).

=- A first stab at hypothesis testing.
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Interpretation: So... what did | find? Marginal effects

Marginal effects
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Interpretation: So... what did | find? Marginal effects

The regression table: marginal effects

{

Table 2: Judges' likelihood of being replaced (a binomial logit)

Dependent variable:

exit
free__economy__diff 1.385%**
(0.432)
AgeExit 0.114%***
(0.023)
attendance —0.016™*
(0.008)
Constant —8.403***
(1.503)
Observations 236
Log Likelihood —115.485
Akaike Inf. Crit. 238.970
Note: *p<0.1; **p<0.05; ***p<0.01

}

{[1] 0.3892999 free_economy_diff 0.5391107 free_economy_diff 1.554907 free_economy_ diff 71.44815
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Interpretation: So... what did | find? Marginal effects

The regression table: marginal effects

Typical statements about marginal effects

1. Change in logodds (logoddsratio):
“When the political distance between judges’ appointing and reap-
pointing governments increases, the likelihood of replacing the

judge increases.”

=- A first stab at hypothesis testing.
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Interpretation: So... what did | find? Marginal effects

The regression table: marginal effects

Typical statements about marginal effects

2. Percentage change (change in odds): for smaller effects
(logoddsratio < 1)

P set scenario for a single x: here, the interquartile range is 0.39

» calculate change in logodds 1.385 x 0.39 = 0.539

» back-transform from logoddsratio to percentage change in odds:
(exp(Bx) —1) x 100 = 71

“All else equal, the likelihood that a judge is replaced is 71%
higher for a judge facing a relatively distant government compared
to a colleague tha faces a more aligned government (interquartile
range).”
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Interpretation: So... what did | find? Marginal effects

The regression table: marginal effects

Typical statements about marginal effects

3. Multiplicative change (change in odds): for larger relative changes
(logoddsratio > 1)

> set scenario for a single x: here, a one-unit change
calculate logoddsratio: Sx =1.38 x 1
» calculate oddsratio: exp(fx x 1) = exp(1.385) = 4.

“The likelihood that a judge exits the court is 4 times higher if
that distance increased to 1.”

v

= relative change in y when x changes
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Interpretation: So... what did | find? Marginal effects

In R

#First scenario for x: change equal to the interquartile range
change = IQR(df$free_economy_diff, na.rm = T)

change

[1] 0.3892999

#Change in logodds (i.e. logoddsratio) for a replacement
mod$coefficients[2] * change

free_economy_diff 0.5391107

# 0Odds ratio: <1 is negative; > 1 is positive
exp(mod$coefficients[2]) * change

free_economy_diff 1.554907

# Percentage change in odds : when logoddsratio < 1
(exp(mod$coefficients[2] * change) - 1)*100
free_economy_diff 71.44815

# Multiplicative (oddsratio) : when loglogodds are > 1)

bigchange = 1
exp(mod$coefficients[2] * bigchange)

free_economy_diff 3.99411
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Interpretation: So... what did | find? First difference

First difference
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Interpretation: So... what did | find? First difference

Predicted values

If you believe the model describes reality appropriately, you can
learn more about it by interpreting more thoroughly

» QOdds ratios are notoriously hard to understand.

» The effect depends on the value of y; and all the other xs.

= Interpret the predicted values
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Interpretation: So... what did | find? First difference

Predicted point estimates (text)

Formulate scenarios using point estimates (in text)

> Take an all-else-equal approach: Let one x change and keep all others
constant (on a typical value).

» Find the typical representative of two x values and set the other xs
accordingly.

= Which one you use depends on your objective: A theoretical point,
assess effect of intervention on groups...
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Interpretation: So... what did | find? First difference

Example:
Let's do an example with four scenarios: what is the effect of political
distance for young and old judges respectively?

» low and high political distance: here, the interquartile range.
» young and old judges: here, 40 and 65 years
> set a value for all other covariates: here, no change in attendance.

= predict for all scenarios, then calculate the difference you're interested in

scenarios <-
data.frame(
#Reasonable increment in preference distance between governments
free_economy_diff = rep(quantile(df$free_economy_diff, na.rm = T, probs = c(0.25, 0.75)),
2),
#4 40 and a 65 year old judge
AgeExit = c(40, 40, 65, 65),
#No change in attendance
attendance = 0
)
scenarios <-
scenarios %>
mutate (
preds = predict(mod, scenarios, type = "response')
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Interpretation: So... what did | find? First difference

Example

scenarios <-
scenarios %>
group_by (AgeExit) %>%
#Difference in outcomes when government changes among young and old judges, respectively
mutate(first_diff_pref = preds - lag(preds))

scenarios

## # A tibble: 4 x 5
## # Groups: AgeExit [2]
#4# free_economy_diff AgeExit attendance preds first_diff_pref

## <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 0.0714 40 0 0.0228 NA
## 2 0.461 40 0 0.0385 0.0157
## 3 0.0714 65 0 0.286 NA
## 4 0.461 65 0 0.407 0.121

» A left-right shift in government preferences would increase the likelihood that a young judge is replaced by 1.6
percentage point.

» A left-right shift in government preferences would increase the likelihood that an old judge is replaced by 12 percentage
points.
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Interpretation: So... what did | find? First difference

Predicted values (graphic)

Formulate scenarios using point estimates and put them on speed

» Predict y values for the entire range of x and plot it.
» Simulate confidence and plot that too.

» You can do this for two scenarios.

= You get a sense of the actual differences in the data.

Silje Synngve Lyder Hermansen Models of outcome and choice: The logit model 55 /67



Interpretation: So... what did | find? First difference

In R:

library(ggeffects)
eff <- ggpredict(mod,
#Covariates I vary:
terms = c(
#Full range of government preferences
"free_economy_diff [all]",
#Young and old judges
"AgeExit[40, 65]"),
#Covariates I hold constant
condition = "attendance[0]")

Silje Synngve Lyder Hermansen Models of outcome and choice: The logit model 56 /67



Interpretation: So... what did | find? First difference

Effect plot

Effect of government preferences on judge exits
..for young and old judges

100%

AgeExit
He
He

Judge is replaced

10 1
Political distance between governments
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Interpretation: So... what did | find? First difference

Conclusion

> hypothesis is supported: regression coefficient in expected direction
and significant

> relative effects are substantial

> first-difference/predicted outcomes: small and variable depending on

the judge

= how substantively significant are these findings?
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Model assessment: How well is reality described?
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Model assessment: How well is reality described?

Model assessment

Model assessments aim to gauge how well we describe the data (i.e.
the y).

» comparison between predicted and observed values (as in OLS).
» mapping outcomes to the recoded, "latent" variable (GLM).

= You have a few additional "tricks" to the standard OLS assessment.
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Model assessment: How well is reality described?

Brier score

Describes the "average size' of the residuals.
1 n ) 2
By = 2 (6 — vi)

= Lower scores imply better predictions.
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Model assessment: How well is reality described? How well do | discriminate?

How well do | discriminate?
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Model assessment: How well is reality described? How well do | discriminate?

How well do | discriminate?

The real question for logits is how well do | distinguish 0s from 1s.

» what is the value of my cut point (7)?

= Several strategies.
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Model assessment: How well is reality described? How well do | discriminate?

Table comparison

| can set a single cut point.

» | often use the null-model (i.e. proportion of successes)

» then recode all probabilities higher than the cut point to 1 and all
below to 0:

» How often do | predict correctly?
> on average (proportion of corrects)

» for each value of the outcome (true/false positives and negatives)

= | can decide how risk-averse | am in my positive predictions
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Model assessment: How well is reality described?

The ROC curve

How well do | discriminate?

The ROC lets the cut values vary and displays how wrong we are on
each side (true positive vs. false positive).

> A model with good predictions has a curve tending towards the upper
left corner.

» The actual cut value depends on our priorities

= The graphic is useful in and of itself
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Model assessment: How well is reality described? How well do | discriminate?

Hosmer-Lemeshow test

Doesn’t set the cut point, but bins the data.

» sorts data from low to high probability
» slices it up in g number of groups (e.g. by deciles)

= performs a x? test to assess whether the prediction are significantly
different from the observations
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Model assessment: How well is reality described? How well do | discriminate?

The separation plot

The separation plot shows how the density of observed ''successes"
increases as our predicted values increase.

=- Another graphic that is useful in and of itself
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