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GLM: A recap

Reminder: What is a GLM?

Regressions aim to describe (a linear) relationship between x and y
with one number, β.

▶ Assumes a continuous and unbounded variable.
▶ When y is neither (e.g. binary), we relied on a latent continuous

variable
▶ To approximate the latent variable, we calculated the logodds (i.e. we

compare)

⇒ Probability distribution maps unobserved variable to observed outcomes.
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GLM: A recap

Today: nominal and ordinal variables

Strategies when our outcome variable is categorical

▶ categorical (e.g. party, profession,. . . ) → multinomial regression
▶ ordinal (e.g. attitudes towards topics. . . ) → ordinal regression

⇒ Models of choice where we model the chooser’s characteristics
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Multinomial logistic regression Two conceptions of multinomial regression

Two conceptions of multinomial regression

▶ Latent variable approach: Our utility of each choice.
▶ A series of binomial logits with the same reference category.
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Multinomial logistic regression Two conceptions of multinomial regression

Latent variable approach

Latent variable approach: Imagine m choices modeled as
ym = am × bmxi

▶ bmxi reflects the utility of a choice m for the chooser i with x
characteristic. → systematic term

▶ am reflects the baseline utility of that choice → stochastic term

⇒ The preferred choice is the one with the highest utility
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Multinomial logistic regression Example: Party choice

Example: Party choice

Let’s consider party choice among voters

▶ ESS survey round (chap 6, Hermansen, 2023)
▶ respondents give:

▶ preferred party
▶ attitudes towards immigration
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Multinomial logistic regression Example: Party choice

I can rank parties

Let’s rank the parties according to the respondents’ choice
tab <-

df %>%
#Group by party
group_by(Party) %>%
#Number of respondent by party
reframe(n = n()) %>%
mutate(

#Total number of respondents
N = sum(n),
#Proportion/probability of group
p = n/N) %>%

#Sort just for facility
arrange(p) %>%
mutate(

#Check if it sums up to 1
cum = cumsum(p),
#Which is the largest?
choice = if_else(row.names(.) == which.max(p),

Party, "-"))
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Multinomial logistic regression Example: Party choice

I can rank parties

## # A tibble: 10 x 6
## Party n N p cum choice
## <chr> <int> <int> <dbl> <dbl> <chr>
## 1 K 8 1179 0.00679 0.00679 -
## 2 A 17 1179 0.0144 0.0212 -
## 3 LA 48 1179 0.0407 0.0619 -
## 4 KF 65 1179 0.0551 0.117 -
## 5 E 77 1179 0.0653 0.182 -
## 6 SF 108 1179 0.0916 0.274 -
## 7 RV 134 1179 0.114 0.388 -
## 8 DF 143 1179 0.121 0.509 -
## 9 S 268 1179 0.227 0.736 -
## 10 V 311 1179 0.264 1 V
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Multinomial logistic regression Example: Party choice

I can rank parties (figure)
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Preferred party choice among respondents

▶ the most frequent party choice is the most probable outcome
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Multinomial logistic regression Example: Party choice

Theoretical link to political science

The assumption is that choosers are rational, and choose a category
(mj) whenever its utility exceeds the alternative (md).

U(mj) > U(md)

⇒ This is also how we estimate it; through comparisons
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Multinomial logistic regression Example: Party choice

A series of binomial logits

A series of binomial logits with the same reference category.

▶ Data consists of many groups, but I only compare two groups →
data/variation intensive model choice.

▶ Categories/choice are mutually exclusive → Different β for each
choice

⇒ All choices are given a probability and they sum up to one.
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Multinomial logistic regression Example: Party choice

Example: ESS survey round

Let’s do an intercept-only model

Logit transformation:
logit(pm) = log(pm

pd
)

tab <-
df %>%
#Group by party
group_by(Party) %>%
#Number of respondent by party
reframe(n = n()) %>%
mutate(

#Total number of respondents
N = sum(n),
#Proportion/probability of group
p = n/N,
#Pick Social democrats as reference category
p_ref = p[Party == "S"],
#Odds
odds = p/p_ref,
#Logodds
logodds = log(odds))
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Multinomial logistic regression Example: Party choice

Example: ESS survey
▶ intercept-only model
▶ . . . where the reference-level (S) is effectively left out

## # A tibble: 10 x 7
## Party n N p p_ref odds logodds
## <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
## 1 A 17 1179 0.0144 0.227 0.0634 -2.76
## 2 DF 143 1179 0.121 0.227 0.534 -0.628
## 3 E 77 1179 0.0653 0.227 0.287 -1.25
## 4 K 8 1179 0.00679 0.227 0.0299 -3.51
## 5 KF 65 1179 0.0551 0.227 0.243 -1.42
## 6 LA 48 1179 0.0407 0.227 0.179 -1.72
## 7 RV 134 1179 0.114 0.227 0.5 -0.693
## 8 S 268 1179 0.227 0.227 1 0
## 9 SF 108 1179 0.0916 0.227 0.403 -0.909
## 10 V 311 1179 0.264 0.227 1.16 0.149
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Multinomial logistic regression Example: Party choice

In R: set a reference level
▶ We set a reference level pd : That’s the leave-one-out trick.

df <-
df %>%
#I use the Social democrats
mutate(Party = relevel(as.factor(Party), ref = "S"))

▶ Estimate the model

library(nnet)
mod.cat <- multinom(Party ~

1,
df)

## # weights: 20 (9 variable)
## initial value 2714.747825
## iter 10 value 2332.511892
## final value 2326.831829
## converged
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Multinomial logistic regression Example: Party choice

Results table

The result is a series of equations, one for each party

Table 1:

Dependent variable:
A DF E K KF LA RV SF V

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Constant −2.76∗∗∗ −0.63∗∗∗ −1.25∗∗∗ −3.51∗∗∗ −1.42∗∗∗ −1.72∗∗∗ −0.69∗∗∗ −0.91∗∗∗ 0.15∗

(0.25) (0.10) (0.13) (0.36) (0.14) (0.16) (0.11) (0.11) (0.08)

Akaike Inf. Crit. 4,671.66 4,671.66 4,671.66 4,671.66 4,671.66 4,671.66 4,671.66 4,671.66 4,671.66

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Multinomial logistic regression Example: Party choice

With predictors
Let’s regress party choice on scepticism towards immigration
library(nnet)
mod.cat <- multinom(Party ~

Skepsis,
df)

## # weights: 30 (18 variable)
## initial value 2705.537484
## iter 10 value 2304.290245
## iter 20 value 2246.392642
## final value 2246.301290
## converged

Table 2:

Dependent variable:
A DF E K KF LA RV SF V

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Skepsis 0.23 0.56∗∗∗ −0.04 −0.18 0.04 0.07 −0.30∗∗∗ −0.10 0.12∗∗

(0.15) (0.07) (0.08) (0.24) (0.09) (0.10) (0.07) (0.07) (0.05)

Constant −3.89∗∗∗ −3.69∗∗∗ −1.04∗∗ −2.70∗∗ −1.58∗∗∗ −2.06∗∗∗ 0.62∗ −0.43 −0.43
(0.85) (0.40) (0.41) (1.09) (0.44) (0.51) (0.32) (0.36) (0.27)

Akaike Inf. Crit. 4,528.60 4,528.60 4,528.60 4,528.60 4,528.60 4,528.60 4,528.60 4,528.60 4,528.60

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 20 / 70



Multinomial logistic regression Interpretation

Interpretation
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Multinomial logistic regression Interpretation

Interpretation

All the possibilities of the binomial logit are open, but the
backtransformation is a hack

⇒ However, you want to decide which story you want to tell
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Multinomial logistic regression Interpretation

Different approaches

▶ With respect to the reference category
▶ the regression table (logodds): direction and statistical significance
▶ marginal effects (partial back-transformation): relative change

▶ Predicted outcomes per category
▶ predicted probability of each category (transformation of latent

variable): when one increases, the other decrease
▶ predicted choice (total back-transformation): most probable choice
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Multinomial logistic regression Interpretation

Marginal effects

The marginal effects are interpreted with reference to the reference
level:

▶ A one-unit increase in skepticism decreases the probability of voting
Alternativet rather than Social democrats with:
▶ (1 - exp(0.23) ×100) = -25%
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Multinomial logistic regression Interpretation

Predicted probabilities

The results can be read as a series of equations, one for each category m

Pr(y = m) ∼ log(odds)

log(odds) = am + bmx

▶ predictions for each category → separate slopes and intercept

log(odds) = −3.89 + 0.23x

⇒ The “latent” variable is here represented by the logodds
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Multinomial logistic regression Interpretation

Predicted probabilities (cont.)
The manual backtransformation requires more manual work

1. set a scenario (e.g. x = 5)
2. backtransform: divide the odds for the relevant category by the sum of the

odds for all categories (incl. the reference) within each scenario

▶ calculate the logodds by hand for all categories within the scenario, sum over
and exponentiate

▶ . . . or use the predict() function in R

preds <- predict(mod.cat, newdata = data.frame(Skepsis = 5), type = "probs")
preds

## S A DF E K KF
## 0.238097927 0.015061927 0.096815641 0.067125356 0.006603907 0.058599993
## LA RV SF V
## 0.043437070 0.100558519 0.093078122 0.280621538

⇒ The probability that a respondent with moderate view on immigration votes
Alternativet is 2 %Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 26 / 70



Multinomial logistic regression Interpretation

Predicted probabilities using R
Predictions give latent probability of voting for a party, given the
scenario.
▶ quickly many predictions

predict(mod.cat, newdata = data.frame(Skepsis = 0:10), type = "probs")

## S A DF E K KF
## 1 0.20156152 0.004111702 0.005024230 0.07102726 0.013573578 0.04142711
## 2 0.22132873 0.005661793 0.009642847 0.07458954 0.012481772 0.04715935
## 3 0.23629023 0.007579911 0.017993633 0.07615679 0.011159273 0.05219498
## 4 0.24492042 0.009852479 0.032598957 0.07549367 0.009686500 0.05608684
## 5 0.24588798 0.012403951 0.057203370 0.07248457 0.008143871 0.05837492
## 6 0.23809793 0.015061927 0.096815641 0.06712536 0.006603907 0.05859999
## 7 0.22090279 0.017523801 0.156998939 0.05956003 0.005130955 0.05636326
## 8 0.19463550 0.019362051 0.241781563 0.05018784 0.003785915 0.05148373
## 9 0.16132571 0.020124962 0.350275938 0.03978347 0.002627871 0.04423892
## 10 0.12492356 0.019542405 0.474085494 0.02946227 0.001704106 0.03551389
## 11 0.09028141 0.017710636 0.598847491 0.02036305 0.001031341 0.02660757
## LA RV SF V
## 1 0.02581331 0.37409713 0.13163687 0.1317273
## 2 0.03042339 0.30551451 0.13044641 0.1627516
## 3 0.03486177 0.24258118 0.12567952 0.1955027
## 4 0.03878487 0.18700519 0.11756233 0.2280087
## 5 0.04179347 0.13963145 0.10651356 0.2575629
## 6 0.04343707 0.10055852 0.09307812 0.2806215
## 7 0.04325535 0.06938758 0.07793232 0.2929450
## 8 0.04090670 0.04546947 0.06196735 0.2904199
## 9 0.03639232 0.02802972 0.04635204 0.2708491
## 10 0.03024714 0.01614272 0.03239172 0.2359867
## 11 0.02346238 0.00867657 0.02112576 0.1918938

▶ in each scenario the sum of probabilities is one:

▶ when the probability of voting for one party increases, the probability
decreases for other parties

▶ lines of effect plot become dependent ’
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Multinomial logistic regression Interpretation

Total backtransformation
To predict party choice, I identify the party with the highest
probability within each scenario/respondent

▶ I let the scenario vary (or I can do in-sample prediction) and predict probabilities

preds <- predict(mod.cat, newdata = data.frame(Skepsis = 0:10), type = "probs")

▶ I identify the most likely outcome for scenario 1

## RV
## 8

▶ R can also do it for me

preds <- predict(mod.cat, newdata = data.frame(Skepsis = 0:10), type = "class")
preds

## [1] RV RV RV S V V V V DF DF DF
## Levels: S A DF E K KF LA RV SF V
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Multinomial logistic regression Interpretation

Total backtransformation (cont.)
Predicted categorical outcomes can also be illustrated in a barplot,
with the predictor on the x-axis
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Multinomial logistic regression Interpretation

Main assumption: IIA

Independence of irrelevant alternatives:

▶ there are no choices beyond what is modeled
▶ consistency: if we prefer A > B and B > C, then also A > C

⇒ The β does not depend on on other values of y (other alternatives).
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Multinomial logistic regression Interpretation

Testing the main assumption:

The Hausmann-McFadden test: Removes an alternative (supposed to
be irrelevant) and check if β changes.

▶ Restricted model (a choice is removed) vs. unrestricted model
(original)

▶ if IIA holds, then unrestricted model has smaller variance.

⇒ χ2-test with smaller value indicates IIA holds.

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 31 / 70



Multinomial logistic regression Interpretation

Prediction testing

▶ Predict outcome
▶ predicted outcome/choice is the one with the highest probability/utility
▶ confusion matrix (Proportion of correct predictions: sum of diagonal

N observations )
▶ Probability of all outcomes separately: ROC curve and separation

plots

⇒ as in binomial regression, where you have one category vs. the rest
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Ordered logistic regression

Ordered logistic regression

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 33 / 70



Ordered logistic regression

What is an ordered variable?

A ranked variable with unknown distance between categories.

▶ Often the result of binning: Close connection to latent formulation.
▶ We can choose how to treat it: As linear, categorical or ordinal.

⇒ estimate a single set of regression parameters, but keep the information
on the order without assuming a continuous variable.
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Ordered logistic regression

Two conceptions of ordered logisitc regression

There are two ways of understanding the ordered logit:

▶ Latent variable: useful for interpretation.
▶ Parallel regressions: useful for understanding and checking estimation.
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Ordered logistic regression Latent variable approach: cutpoints

Cutpoints

We rely on cutpoints to slice up the latent variable and determine
outcomes

▶ Binomial logistic: One cutpoint. → Rarely estimated.
▶ Ordinal logistic: Serveral cutpoints. → Explicit.

⇒ Model estimates both regression parameters (β) and cutpoints (τ).

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 37 / 70



Ordered logistic regression Latent variable approach: cutpoints

A series of cutpoints
You are in the category m when the latent variable is between its
two cutpoints: τm−1 < y⋆ < τm

Figure 1: Slicing up a latent variable
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Ordered logistic regression Latent variable approach: cutpoints

The regression coefficients

The model calculates the odds of being lower than τm

▶ The first cutpoint (τ0) is 0 (−inf ): you cant be lower than the lowest.
▶ The last cutpoint is 1 (+inf ): all observations are in some category.
▶ You end up with m − 1 cutpoints.
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Ordered logistic regression Latent variable approach: cutpoints

The regression output

The regression output reports both β and τ

▶ Regression coefficient β is reported in relation to upper cutpoint of
the category: τm − βxi

▶ Cutpoints serve also as intercepts.
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Ordered logistic regression Latent variable approach: cutpoints

The predicted value

The predicted probability of being in category m:

Pr(yi = m) = exp(τm − βxi)
1 + exp(τm − βxi)

− exp(τm−1 − βxi)
1 + exp(τm−1 − βxi)

(1)
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Ordered logistic regression An example: Attitudes towards redistribution

An example:

ESS respondents (that voted V or DF) are asked to what extent they
believe the state should engage in redistribution (1 = disagree; 5 = agree).

#Load in data
download.file(

url("https://siljehermansen.github.io/teaching/beyond-linear-models/kap10.rda"),
destfile = "kap10.rda"

)
df <- kap10

#Check distribution
barplot(table(df$Udjaevn))
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Ordered logistic regression An example: Attitudes towards redistribution

An example:
ESS respondents (that voted V or DF) are asked to what extent they
believe the state should engage in redistribution (1 = disagree; 5 = agree).

Figure 2: Attitudes towards redistribution is an ordered variable
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Ordered logistic regression An example: Attitudes towards redistribution

Attitudes towards redistribution as a function of income

#Library for ordinal regression
library(MASS)
#Recode into ordered factor
df$Udjaevn.ord <- as.ordered(as.factor(df$Udjaevn))
#Run regression
mod.ord <- polr(Udjaevn.ord ~ Indtaegt,

df,
method = "logistic",
Hess = TRUE)

summary(mod.ord)
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Ordered logistic regression An example: Attitudes towards redistribution

Attitudes towards redistribution as a function of income

## Call:
## polr(formula = Udjaevn.ord ~ Indtaegt, data = df, Hess = TRUE,
## method = "logistic")
##
## Coefficients:
## Value Std. Error t value
## Indtaegt 0.1153 0.03155 3.653
##
## Intercepts:
## Value Std. Error t value
## 1|2 -2.4186 0.2903 -8.3306
## 2|3 -0.6008 0.2179 -2.7566
## 3|4 0.3069 0.2150 1.4277
## 4|5 2.2276 0.2403 9.2686
##
## Residual Deviance: 1298.396
## AIC: 1308.396
## (51 observations deleted due to missingness)
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Ordered logistic regression An example: Attitudes towards redistribution

We learn two things from the regression output

Regression coefficient reports effect of x on probability to be placed
one category higher

▶ Effect in logodds: 0.115
▶ We can backtransform to one unit increase in x : (exp(β) − 1) × 100

= 12% increase in likelihood of a higher category.

⇒ Hypothesis testing as in a binomial logit
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Ordered logistic regression An example: Attitudes towards redistribution

We learn two things from the regression output

We have one intercept per cutpoint

▶ e.g.: intercept of passing from 1 to 2 is -2.419
▶ e.g.: intercept is reported as significant (with standard errors)

⇒ The model does a fair job in distinguishing between categories.
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Ordered logistic regression An example: Attitudes towards redistribution

Predicted scenarios

We interpret predicted probability by choosing one level of x and
one category (two cutpoints) of y : What is the probability of m?

Pr(yi = m) = exp(τm − βxi)
1 + exp(τm − βxi)

− exp(τm−1 − βxi)
1 + exp(τm−1 − βxi)

(2)
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Ordered logistic regression An example: Attitudes towards redistribution

Example

Let’s choose low-income respondents (x = 1) and category 3 (diff
between cutpoints 2 and 3)

z = mod.ord$zeta
x = 1

logodds1 <- z[3] - coefficients(mod.ord) * x
logodds2 <- z[3-1] - coefficients(mod.ord) * x
## Probabilities
p1 <- exp(logodds1)/(1 + exp(logodds1)) #3|4 or lower
p2 <- exp(logodds2)/(1 + exp(logodds2)) #2|3 or lower
## Difference between cutpoints
p1 - p2 #cat 3
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Ordered logistic regression An example: Attitudes towards redistribution

An example

Predicted proportion in category

paste(round((p1-p2)*100),
"% of low-income respondents are predicted to answer x = 3 ('neutral')." )

[1] “22 % of low-income respondents are predicted to answer x = 3 (‘neutral’).”

Cumulative probability

paste(round((p1)*100),
"% of low-income respondents are predicted to answer x = 3 ('neutral') or lower to the question of whether they support redistribution." )

[1] “55 % of low-income respondents are predicted to answer x = 3 (‘neutral’) or lower
to the question of whether they support redistribution.”
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Ordered logistic regression An example: Attitudes towards redistribution

Two ways of viewing the slicing

We can report the probability (e.g. 0.22) of ending up between two
cutpoints, or the cumulative probability (e.g. 0.55) to be below each

point.
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Ordered logistic regression An example: Attitudes towards redistribution

Exercice:

Increase the τ (z) within each value of Income (x)
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Ordered logistic regression An example: Attitudes towards redistribution

Exercice:

Increase the τ (z) within each value of Income (x)
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Ordered logistic regression An example: Attitudes towards redistribution

Result

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 55 / 70



Ordered logistic regression Parallel regressions approach: for assessment

Parallel regressions approach: for assessment
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Ordered logistic regression Parallel regressions approach: for assessment

Parallel regressions approach

The parallel regression approach is useful to understand how the
model is estimated

▶ The y is recoded into m − 1 dummy variables indicating if y ≤ m
▶ Run a series of regressions where all β are fixed (i.e.: the same).

⇒ This is also useful when we assess the model

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 57 / 70



Ordered logistic regression How good is our model?

How good is our model?

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 58 / 70



Ordered logistic regression How good is our model?

The basic assumption
The basic assumption is that all parallel regressions have (about)
the same regression coefficient
▶ Check the mean of the predictor for each value of y . Does it trend?

df %>%
filter(!is.na(Udjaevn)) %>%
group_by(Udjaevn) %>%
reframe(mean(Indtaegt, na.rm = T))

## # A tibble: 5 x 2
## Udjaevn ‘mean(Indtaegt, na.rm = T)‘
## <dbl> <dbl>
## 1 1 4.8
## 2 2 5.58
## 3 3 5.96
## 4 4 6.41
## 5 5 6.75

▶ Run parallel regressions without constraint on β. Are they similar?
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Recode into dummies

The dummies flag cases below a cumulative threshold of outcomes

##
df$ut1 <- ifelse(df$Udjaevn > 1, 1 , 0) #2 or above
df$ut2 <- ifelse(df$Udjaevn > 2, 1 , 0) #3 or above
df$ut3 <- ifelse(df$Udjaevn > 3, 1 , 0) #4 or above
df$ut4 <- ifelse(df$Udjaevn > 4, 1 , 0) #5

⇒ The model then runs 4 regressions where β reports an aggregated value
from all 4 coefficients (think: weigted mean).
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Run four regressions

Let’s examplify with the parallel regressions without fixed β:

##Parallel regressions:
mod1 <- glm(ut1 ~ Indtaegt, df, family = "binomial")
mod2 <- glm(ut2 ~ Indtaegt, df, family = "binomial")
mod3 <- glm(ut3 ~ Indtaegt, df, family = "binomial")
mod4 <- glm(ut4 ~ Indtaegt, df, family = "binomial")
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Compare coefficients from four regressions
##
## ======================================================
## Dependent variable:
## ------------------------------------
## ut1 ut2 ut3 ut4
## (1) (2) (3) (4)
## ------------------------------------------------------
## Indtaegt 0.189** 0.125*** 0.110*** 0.094**
## (0.085) (0.041) (0.035) (0.045)
##
## Constant 2.048*** 0.552** -0.270 -2.082***
## (0.474) (0.260) (0.231) (0.319)
##
## ------------------------------------------------------
## Observations 459 459 459 459
## Log Likelihood -79.653 -234.669 -303.983 -217.674
## Akaike Inf. Crit. 163.306 473.338 611.967 439.348
## ======================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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Coefficient should be a weighted average from four
regressions

These βs are weighted by the number of observations in each category:

table(df$Udjaevn)

##
## 1 2 3 4 5
## 21 84 96 206 95
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We can plot the βs for comparison:

slope <- rbind(summary(mod1)$coefficients[2, c(1)],
summary(mod2)$coefficients[2, c(1)],
summary(mod3)$coefficients[2, c(1)],
summary(mod4)$coefficients[2, c(1)])

se.slope <- rbind(summary(mod1)$coefficients[2, c(2)],
summary(mod2)$coefficients[2, c(2)],
summary(mod3)$coefficients[2, c(2)],
summary(mod4)$coefficients[2, c(2)])

threshold <- c("1|2","2|3","3|4","4|5")
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We can plot the βs for comparison:

data.frame(slope,
se.slope,
threshold) %>%

ggplot +
geom_point(aes(x = threshold,

y = slope)) +
geom_errorbar(aes(x = threshold,

ymax = slope + 1.96 * se.slope,
ymin = slope - 1.96 * se.slope),

width = 0) +
geom_hline(yintercept = mod.ord$coefficients,

lty = 3) +
geom_text(aes(y = mod.ord$coefficients-0.05,

x = 3.5,
label = paste("\u03b2 =", round(mod.ord$coefficients,2))
),

parse = F) +
labs(title = "Slope coefficients from 4 regressions") +
ylab("Coefficients") +
xlab("Models 1 to 4")
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We can plot the βs for comparison:
The overall β is 0.12. If the ordered model describes the data well, then
all the unconstrained βs should resemble that description.

ß = 0.12
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Silje Synnøve Lyder Hermansen Multinomial and ordered logits 2025-03-17 67 / 70



Ordered logistic regression An example of parallel regressions

A visual inspection
A more visual way of checking the “parallel lines assumption” is to inspect
if the regression lines are parallel.
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Are the lines paralell?
(Results from 4 separate logits)
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When is it smart to run an ordered logit?

▶ You have few ordered categories
▶ The effect is approximately the same across the categories (parallel

lines assumption)
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What do I do if the assumption doesn’t hold?

▶ Run an OLS/linear model:
▶ if you have many categories
▶ fairly equal spread of observations between categories

▶ Run a multinomial model:
▶ i.e. estimate different β for each regression/threshold
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