## Event count models

#### Silje Synnøve Lyder Hermansen

2024-04-15

Silje Synnøve Lyder Hermansen

Event count models

2024-04-15 1 / 26

## The dependent variable

2 / 26

#### Count data

#### Count data is common in political science

### Count data

#### Count data is common in political science

▶ Discrete: consists only in integers (0, 1, 2, ... no digits)

## Count data

#### Count data is common in political science

- Discrete: consists only in integers (0, 1, 2, ... no digits)
- Bounded at zero, often long tail upwards.

## Count data

#### Count data is common in political science

- Discrete: consists only in integers (0, 1, 2, ... no digits)
- Bounded at zero, often long tail upwards.

#### Count models: What are they good for?

#### When do we use count models?

The data generating process allows us to

## When do we use count models?

#### The data generating process allows us to

observe and count a number of events and

## When do we use count models?

#### The data generating process allows us to

- observe and count a number of events and
- define a time frame or geographical space for the occurence(s)

## When do we use count models?

#### The data generating process allows us to

- observe and count a number of events and
- define a time frame or geographical space for the occurence(s)

 $\Rightarrow$  e.g. number of meetings between decision makers, violent events, legislative proposals, etc.

## Why not a binomial logistic regression?

These are indeed binary outcomes

## Why not a binomial logistic regression?

These are indeed binary outcomes but we don't have information on the event level

## Why not a binomial logistic regression?

## These are indeed binary outcomes but we don't have information on the event level

 $\Rightarrow$  Variables are on the exposure level; related to when (where) the events took place.

Why not OLS?

#### The variable could be approximated to a continuous measure but

Why not OLS?

#### The variable could be approximated to a continuous measure but

it is bounded at zero, so predictions would be wrong

## Why not OLS?

#### The variable could be approximated to a continuous measure but

▶ it is bounded at zero, so predictions would be wrong → same problems as logit

## Why not OLS?

#### The variable could be approximated to a continuous measure but

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- it is scewed. Some people add a constant and logtransform: log(y + 0.1)

## Why not OLS?

#### The variable could be approximated to a continuous measure but

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- it is scewed. Some people add a constant and logtransform: log(y + 0.1) → but heteroskedasticity and non normal errors remain

## Why not OLS?

#### The variable could be approximated to a continuous measure but

- ▶ it is bounded at zero, so predictions would be wrong → same problems as logit
- ▶ it is scewed. Some people add a constant and logtransform: log(y + 0.1) → but heteroskedasticity and non normal errors remain

 $\Rightarrow$  We replace the normal distribution with another probability distribution

The generalized linear model strategy

There are many count models

## The generalized linear model strategy

#### There are many count models

Poisson model: the base-line

## The generalized linear model strategy

#### There are many count models

- Poisson model: the base-line
- Other models: to address problems with the poisson

## The generalized linear model strategy

#### There are many count models

- Poisson model: the base-line
- Other models: to address problems with the poisson

The Poisson model

## The Poisson model

# The poisson distribution maps probabilities of events within a window to outcomes

Exposure (t, t + h): A window of opportunity between two bounaries (geographical or spacial)

- Exposure (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- Probability of event (λ): Simply the logtransformed mean of events within that window

- Exposure (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- Probability of event (λ): Simply the logtransformed mean of events within that window
  - Probability of event =  $h\lambda$

- Exposure (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- Probability of event (λ): Simply the logtransformed mean of events within that window
  - Probability of event =  $h\lambda$
  - Probability of no event = 1  $h\lambda$

- Exposure (t, t + h): A window of opportunity between two bounaries (geographical or spacial)
- Probability of event (λ): Simply the logtransformed mean of events within that window
  - Probability of event =  $h\lambda$
  - Probability of no event = 1  $h\lambda$

The Poisson model

Formula

#### The equation the model estimates:

$$E(y_i) \equiv h\lambda_i = h \times \exp(\alpha + \beta \times x_i) \tag{1}$$

Silje Synnøve Lyder Hermansen

#### What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times exp(\alpha + \beta \times x_i)$$
(2)

Two strategies :

Offset: Move it into the equation but constrain parameter: exp(α + β × x<sub>i</sub> + 1 × log(h<sub>i</sub>))

#### What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times exp(\alpha + \beta \times x_i)$$
(2)

Two strategies :

• **Offset:** Move it into the equation but constrain parameter:  $exp(\alpha + \beta \times x_i + 1 \times log(h_i)) \rightarrow we \ don't \ see \ it \ in \ the \ BUTON$ 

#### What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times exp(\alpha + \beta \times x_i)$$
(2)

Two strategies :

- Offset: Move it into the equation but constrain parameter: exp(α + β × x<sub>i</sub> + 1 × log(h<sub>i</sub>)) → we don't see it in the BUTON
- Estimate a parameter:  $exp(\alpha + \beta_1 \times x_i + \beta_2 \times log(h_i))$

#### What to do with the exposure parameter?

$$E(y_i) \equiv h\lambda_i = h \times exp(\alpha + \beta \times x_i)$$
(2)

Two strategies :

- Offset: Move it into the equation but constrain parameter: exp(α + β × x<sub>i</sub> + 1 × log(h<sub>i</sub>)) → we don't see it in the BUTON
- Estimate a parameter:  $exp(\alpha + \beta_1 \times x_i + \beta_2 \times log(h_i))$

 $\Rightarrow$  If the exposure is the same for all units, we set it to 1 and ignore it.

The Poisson model

### Interpretation: back and forth

#### Interpretation is relatively easy with all count models

The Poisson model

### Interpretation: back and forth

#### Interpretation is relatively easy with all count models

Recoding (for estimation): we logtransform the mean of the y (within x-values)

# Interpretation: back and forth

#### Interpretation is relatively easy with all count models

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- We back-transform (for interpretation): exp(λ) is simply an approximation (with digits) of our counts!

# Interpretation: back and forth

#### Interpretation is relatively easy with all count models

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- We back-transform (for interpretation): exp(λ) is simply an approximation (with digits) of our counts!

The Poisson model

# Interpretation: effects

#### Interpretation is relatively easy

Recoding (for estimation): we logtransform the mean of the y (within x-values)

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- We back-transform (for interpretation):
  - Predicted value:  $exp(\hat{\lambda})$  is simply an approximation (with digits) of our counts

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- We back-transform (for interpretation):
  - Predicted value:  $exp(\hat{\lambda})$  is simply an approximation (with digits) of our counts
  - Effect of  $\beta$ :  $exp(\beta)$  is multiplicative of predicted  $\hat{\lambda}$

- Recoding (for estimation): we logtransform the mean of the y (within x-values)
- We back-transform (for interpretation):
  - Predicted value:  $exp(\hat{\lambda})$  is simply an approximation (with digits) of our counts
  - Effect of  $\beta$ :  $exp(\beta)$  is multiplicative of predicted  $\hat{\lambda} \rightarrow easy!$
- $\Rightarrow$  Make scenarios, predict, knock yourself out

# Dispersion

# The main assumption of the Poisson model

#### The model assumes equidispersion: The spread equals the mean

• The y can be overdispersed, but not the  $\hat{\lambda}$ 

# The main assumption of the Poisson model

#### The model assumes equidispersion: The spread equals the mean

• The y can be overdispersed, but not the  $\hat{\lambda} \rightarrow as$  in OLS

# The main assumption of the Poisson model

The model assumes equidispersion: The spread equals the mean

• The y can be overdispersed, but not the  $\hat{\lambda} \rightarrow as$  in OLS

 $\Rightarrow$  The standerd errors will be too small

Identifying overdispersion

Poissonness plot

Identifying overdispersion

- Poissonness plot
- Rootograms

# Identifying overdispersion

- Poissonness plot
- Rootograms
- ► Formal tests: Using residuals and significance tests.

# Identifying overdispersion

- Poissonness plot
- Rootograms
- ► Formal tests: Using residuals and significance tests.

Reasons for overdispersion

Lack of exposure time

Reasons for overdispersion

- Lack of exposure time
- Poor choice of variables (include more, also random intercepts)

### Reasons for overdispersion

- Lack of exposure time
- Poor choice of variables (include more, also random intercepts)
- Too many zeros

### Reasons for overdispersion

- Lack of exposure time
- Poor choice of variables (include more, also random intercepts)
- Too many zeros
- Events are related

Dispersion Adressing overdispersion

#### Adressing overdispersion

Dispersion Adressing overdispersion

### The quasi-poisson model

• Adds an additional parameter,  $\phi$ , to the variance estimation

Dispersion Adressing overdispersion

### The quasi-poisson model

Adds an additional parameter,  $\phi$ , to the variance estimation  $\rightarrow$  *similar* to robust standard errors

### The quasi-poisson model

- Adds an additional parameter,  $\phi$ , to the variance estimation  $\rightarrow$  *similar* to robust standard errors
- $\Rightarrow \beta$  remains the same, standard errors are larger

# The negative binomial model

#### The event is in fact generated by two processes

# The negative binomial model

#### The event is in fact generated by two processes

$$\blacktriangleright \lambda_i = exp(\beta \times x_i + 1 \times u_i)$$

•  $v = exp(u_i)$  is in itself generated by a gamma distribution  $v_i \sim f\Gamma(\alpha)$ 

The latent variable is manipulated directly: the rate increases over y

# The negative binomial model

#### The event is in fact generated by two processes

$$\blacktriangleright \lambda_i = exp(\beta \times x_i + 1 \times u_i)$$

•  $v = exp(u_i)$  is in itself generated by a gamma distribution  $v_i \sim f\Gamma(\alpha)$ 

The latent variable is manipulated directly: the rate increases over y



#### Substantially that two data generating processes are at work.

22 / 26

#### Exess zeros

#### Substantially that two data generating processes are at work.

One producing zeros

### Exess zeros

#### Substantially that two data generating processes are at work.

- One producing zeros
- One producing (at least some) positive counts

### Exess zeros

#### Substantially that two data generating processes are at work.

- One producing zeros
- One producing (at least some) positive counts

 $\Rightarrow$  We can model this in two parallel regressions with possibly different x or just an additional intercept.

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

• Hurdle part: A binomial logit where success is y > 0

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

- Hurdle part: A binomial logit where success is y > 0
- Count model: A zero-truncated poisson (or negative binomial) on all the positive counts.

Observations have a higher hurdle/threshold/distance to pass in order to obtain a positive count (from 0 to 1) than between positive counts (1 to 2, 2 to 3, etc)

- Hurdle part: A binomial logit where success is y > 0
- Count model: A zero-truncated poisson (or negative binomial) on all the positive counts.
- $\Rightarrow$  Can accomodate under-dispersion too.

#### There are two sources of zeros, but only one of positive counts.

#### There are two sources of zeros, but only one of positive counts.

Zero-inflated part: A binomial logit where success is the "always zeros".

#### There are two sources of zeros, but only one of positive counts.

- Zero-inflated part: A binomial logit where success is the "always zeros".
- Count model: A poisson or negative binomial that is not truncated.

#### There are two sources of zeros, but only one of positive counts.

- Zero-inflated part: A binomial logit where success is the "always zeros".
- Count model: A poisson or negative binomial that is not truncated.

 $\Rightarrow$  functions as a switch that is turned on/off after a threshold. The observation is then passed to the count-model group.

Recap on GLMs

# Recap on GLMs

25 / 26

# What are the criteria for model selection?

# You can think of model selection as a set of criteria that should be met

Try out the model selection decision tree to see my mental map! https://siljehermansen.github.io/teaching/choose\_glm/