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Where are we?

Where are we?

> week 1:

» purpose of the course

» R as an object oriented language
> week 2:

» dialects in R

P descriptive statistics:

» measurement level and choice of descriptives
> data exploration

> week 3: (this week)

» linear regression (OLS)
P interpretation
» non-linear effects
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Where are we?

Plan for the day

P lecture: uncertainty and interpretation of linear models

> substantive interest: the size of the effect
> statistical significance: sources of variation/uncertainty
> R notebook 1: interpretation (Gelman and Hill, King et al)

» study technique: how to use Al/LLMs in this class

» Thursday:

» implementation in R
> R notebook 2: non-linear effects (Berry et al)
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Introduction

Today's example

What is the effect of electoral systems on parliamentarians resource
allocation?

» Members of the European Parliament (MEPs) sit together in one
institution, but run for election under different rules

P expectation: more local investment among MEPs in
candidate-centered systems (compared to party-centered systems),
because of their need for a personal brand

> variables:

» y: number of constituency-level assistants employed (metric)
> x : candidate vs. party-centered systems (binary)
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Introduction Two views on linear regression

Two views on linear regression

Linear regression summarizes how the average values of a numer-
ical outcome variable vary over subpopulations defined by linear
functions of predictors. (Gelman and Hill, 2007, ch 3)

> comparison of means: descriptive approach to regression; makes
sense for categorical predictors

> relationship between variables: their correlation; more causal,
makes sense for numerical predictors
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Introduction Two views on linear regression

A comparison of means: group means

Most obvious when my predictor is categorical

» MEPs from party-centered

daf %>%
eroup_ by (OpenList) %>l systems employ on average 2.47
reframe("mean_y" = mean(LocalAssistants)) %>% Iocal assistants

ungroup %>%
mutate(diff = mean_y - lag(mean_y))

» MEPs from candidate-centered

4% # A tibble: 2 x 3 systems employ on average 3.42
##  Openlist mean_y  diff local assistants.

## <int> <dbl> <dbl>

## 1 0 2.47 NA . .

## 2 1 3.42 0.949 » The difference is 0.95
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Introduction

Two views on linear regression

A comparison of means: regression

Most obvious when my predictor is categorical

#Estimate the equation
mod <- lm(LocalAssistants ~ OpenList,

>

df)
#Summarize the results
summary (mod)
##
## Call:
## Im(formula = LocalAssistants ~ OpenList, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.42 -2.42 -0.47 1.53 36.08
##
## Coefficients:
## Estimate Std. Error t value Pr(>|tl)
## (Intercept) 2.468 0.161 156.35 < 2e-16 ***
## OpenList 0.949 0.234 4.05 5.7e-05 #¥x*
## -
## Signif. codes: 0 %%’ 0.001 ’%x’ 0.01 ’*’ 0.05 ’.” 0.1’
##
## Residual standard error: 3.2 on 737 degrees of freedom

Multiple R-squared:
F-statistic: 16.4 on 1 and 737 DF,

Silje Synngve Lyder Hermansen

0.0218, Adjusted R-squared:
p-value: 5.68e-05

0.0204

Interpretation

MEPs from party-centered

systems employ on average 2.47

local assistants

The difference is 0.95.

MEPs from candidate-centered

systems employ on average 2.47

+ 0.95 = 3.42 local assistants.
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Introduction

Two views on linear regression

Relationship between variables: regression

More descriptive statistics

mod2 <- 1m(LocalAssistants ~ OpenList + LaborCost, »
df)
>
summary (mod2)
## >
## Call: »
## lm(formula = LocalAssistants ~ OpenList + LaborCost, data

##
## Residuals:

#4# Min 1Q Median 3Q Max

## -4.49 -1.94 -0.41 1.08 35.00

##

## Coefficients:

## Estimate Std. Error t value
## (Intercept) 4.1266 0.2861  14.42
## OpenList 0.8288 0.2278 3.64
## LaborCost -0.0702 0.0102 -6.91
## -

## Signif. codes: 0 ’#*x’ 0.001 ’**’ 0.01
##

>

Pr(>Itl)
< 2e-16 ***
0.00029 *xx*
le-11 *xx*

the relationship (correlation)

net of other variable's influence
(controlling for. . .)

the precision (uncertainty)
_the shared variation (R?)

the remaining variation (residuals,
a?)

'%2 0.05 ’.° 0.1 * ° 1

## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14

Silje Synngve Lyder Hermansen
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Interpretation

Stages of interpretaion

» hypothesis testing: direction and signficance

» marginal effect: the relative increase in your predictor
wo/accounting for the value of other preditors.

> prediction: fill in the equation for all predictors and calculate the
predicted effect

> first difference: fill in the equation for two scenarios and calculate
the difference in y

> effect plot: fill in the equation for all scenarios relevant to your
predictor

= as we move to GLMs, the importance of stages 3-6 becomes important
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Interpretation Hypothesis testing

Hypothesis testing
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Interpretation Hypothesis testing

Hypothesis testing

Hypotheses are mostly about direction

summary (mod2) >
##

## Call:

## lm(formula = LocalAssistants ~ OpenList + LaborCost, data =
##

## Residuals:

## Min 1Q Median 3Q Max >
## -4.49 -1.94 -0.41 1.08 35.00

##

## Coefficients:

## Estimate Std. Error t value Pr(>|tl)

## (Intercept) 4.1266 0.2861  14.42 < 2e-16 ***

## OpenList 0.8288 0.2278 3.64 0.00029 #**x*

## LaborCost -0.0702 0.0102 -6.91 le-11 *xx

## -

## Signif. codes: 0 %%’ 0.001 ’*x’ 0.01 ’*’ 0.05 ’.” 0.1’
##

## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14

Silje Synngve Lyder Hermansen Interpretation

and significance

direction: MEPs from
candidate-centered systems have
on average more local assistants
SN their payroll

significance: this is unlikely to
be random

= ... but what is the sub-
stantive effect?

1
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Interpretation Marginal effect: change in x

Marginal effect: change in x
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Interpretation Marginal effect: change in x

Marginal effect: change in x

The relative (marginal) increase in your predictor (difference in
means)

» without accounting for the value of other predictors
» important once we move to GLMs

P regression is the estimation of an equation
y =a+ Bx

» marginal effects focus on Bx

» j3: from the model (you estimated it)
> x: from the data (you pick it)
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Interpretation Marginal effect: change in x

Marginal effect: example of change in x

The relative (marginal) increase in your predictor (difference in
means) witout accounting for the value of other predictors.

» interpretation:

summary (mod2)
> 3: “when x increases with
e one unit, y increases with
## Call: 0
## 1lm(formula = LocalAssistants ~ OpenList + LaborCost, data = df) UnltS
o > x: when labor cost increases
## Residuals: . :
#  Min  1Q Median 30  Max with one unit (x, here 1000
## -4.49 -1.94 -0.41 1.08 35.00
# euros), the average number
## Coefficients: .
## Estimate Std. Error t value pr()ltl) Of aSSIStants decreases by
## (Intercept) 4.1266 0.2861  14.42 < 2e-16 *** 007
## OpenList 0.8288 0.2278 3.64 0.00029 *xx*
## LaborCost -0.0702 0.0102 -6.91 le-11 *xx* i i
it —-- = but is this what we want
## Signif. codes: O ’#*%’ 0.001 ’**’ 0.01 ’%’ 0.05 .’ 0.1 * * 1
# to know?

## Residual standard error: 3.1 on 736 degrees of freedom
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14
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Interpretation Marginal effect: change in x

Partial scenario: set values for x

Find an increment (change) in x that makes sense for your story

> univariate statistics / data
##Summary of x . -
summary (df$LaborCost) eXp|0ratI0n he|ps you find

interesting changes in x

## Min. 1st Qu. Median Mean 3rd Qu. Max. — R

# 4 10 26 23 31 a1 » calculate 8x by filling in a

, , realistic change in x.

##Find two typical values

summary (df $LaborCost) [c(4,5)] . .
> 8580 euro increase (increase by

#  Nean 3rd Qu. 8.58) corresponds to a 0.6
woonu decrease in assistants
## E.g. change from mean to 3rd quartile (,BX = —0.07 x 858)

summary (df $LaborCost) [c(4,5)] %>% diff

= use the univariate statis-
## 3rd Qu. . . . . .
# 8.6 tics to find an interesting in-
crements

Silje Synngve Lyder Hermansen Interpretation 16 februar 2026 20 /60
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Prediction: fill in all x's
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Interpretation Prediction: fill in all x's

Prediction: fill in all x's
We estimated an equation with the help of our data

Yi=a+ Pixi + foxi
data (observed)

» variables: X and Y

> observations: i is a counter for the observations, refers to the ith
observation. i...N

parameters (estimated)

» « intercept, the value of Y when X == 0
» [ slope, the increase in Y when X increases by one unit

We make predictions by filling in data points for that equation

Y; = 4.13 + 0.83 X OpenlList+ -0.07 X LaborCost

If all x's were 1:

4.89 =4.13 +0.83 X 1 +-0.07 X 1
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Interpretation Prediction: fill in all x's

Why prediction?

» data description: “out-of-sample”

> forecasting: e. g. election
» machine learning: e.g create a new variable

» model statistics: “in-sample”
» compare observed and predicted y
P interpretation:

> set scenarios (fill in x)
» predict outcomes (using 3)
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Interpretation Prediction: fill in all x's

Creating one full scenario

You create a predicted scenario when you fill in values for all the
predictors (x).

In R: By hand:
##Create variables \/, == (6% + ﬂ]_ OpenLiSt +
ez s B2LaborCost
# or a data frame
scenario <- data.frame( _
OpenList = 1, \/I_Oé+51X1+ﬂ2><22
LaborCost = 22)
# extract coefficients and apply to new data 341 = 413 + 083 X 1 +
predict(mod2, newdata = scenario) _0 07 X 22
## 1
## 3.4

= MEPs from candidate-centered electoral systems with average labor
cost, are predicted to have — on average — a local staff of 3.41 people.
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Interpretation Prediction: fill in all x's

When would you be interested in full scenarios

When we use prediction for interpretation, we are interested in
three metrics:

P> two assymmetric scenarios: describe two typical value constellations
(Ward and Ahlquist, ch 3)

> first difference: the difference in y between two predicted scenarios

> effect plots: the predicted y, as x increases, holding all other x
constant.
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Interpretation First difference

First difference
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Interpretation First difference

First difference

First difference compares the predicted outcomes of two scenarios
where one x changes, holding all other predictors constant

» first difference: difference between the two

» marginal effect vs first difference:

» linear effects: marginal effect with partial scenario is the same as first
difference
» non-linear effects: the two are different
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Interpretation

How to calculate a first difference

First difference

You create two scenarios and calculate the difference in y between

the two

In R:

x1 = c(0, 1); x2 = 22

# or data frame

scenario <- data.frame(OpenList = c(0, 1),
LaborCost = 22)

#Predict both

predict (mod2, scenario)

#0012
## 2.6 3.4

#Take the difference
predict(mod2, scenario) %>J diff

## 2
## 0.83

Silje Synngve Lyder Hermansen Interpretation

By hand:

Y; = a + BOpenListy., + BaLaborCost

scenario 1: 2.58 = 4.13+0.83 x 0+ —0.07 x
22

scenario 1: 3.41 = 4.13+4+0.83 X1+ —0.07 X
22

First difference: 0.83 = 2.58 — 3.41

=> The first difference can be calculated for
any two scenarios of your choice!
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Interpretation Effect plot

Effect plot
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Interpretation Effect plot

Effect plot

Effect plots allow us to visualize our effects

» choice depends on the measurement level of x

P categorical predictor: a titlted coefficient plot
» numeric predictor: effectplot
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Interpretation Effect plot

Prediction using many scenarios

You create a bunch of scenarios covering the entire range of x
In R:

#Scenario
scenario <- data.frame(OpenList = c(0),
LaborCost = min(df$LaborCost): max(df$LaborCost))
#Inspect the first three scenarios
scenario[1:3,]

##  OpenList LaborCost

## 1 0 3.8
## 2 0 4.8
## 3 0 5.8
#Predict

scenario <- scenario ’>), mutate(preds = predict(mod2, newdata = scenario))
scenario[1:3, ]

##  OpenList LaborCost preds

## 1 0 3.8 3.9
## 2 0 4.8 3.8
## 3 0 5.8 3.7
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Visualize

Interpretation

Effect plot

Visualize by plotting your x against your predicted y

scenario 7>
ggplot +
geom_line (aes(x

y

LaborCost,
preds))

preds

Silje Synngve Lyder Hermansen

Interpretation
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Interpretation Effect plot

Visualization for metric predictors

Metric predictors are best visualized with an effect plot (a line).

Predicted values of LocalAssistants
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Interpretation Effect plot

Visualization: categorical predictor

Categorical predictors are best visoualized with a titled coefficient plot

Predicted values of LocalAssistants
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Interpretation Effect plot
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Two sources of variation in the data

Two sources of variation in the data
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Two sources of variation in the data

Two sources of variation in the data

But are these effects statistically significant?

» Fundamental uncertainty: The natural randomness in outcomes,
even if the true parameters were known (Captured by residual
variance).

> Estimation uncertainty: How precisely are the coefficients
estimated? (Captured by the variance-covariance matrix)

= the uncertainty of your predictions depend on both
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Two sources of variation in the data Fundamental uncertainty

Fundamental uncertainty
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Two sources of variation in the data Fundamental uncertainty

Fundamental uncertainty

Y = a+ X1 + X2 + 0?
data (observed)

» variables: X and Y
> observations: i is a counter for the observations, refers to the ith
observation. i...N

parameters (estimated)

P> « intercept, the value of Y when X ==
» [ slope, the increase in Y when X increases by one unit
» o2 variance in the error term; Vo2 = standard deviation

Silje Synngve Lyder Hermansen Interpretation 16 februar 2026 39/60



Two sources of variation in the data Fundamental uncertainty

Let's rewrite
Any model in this class

Y ~ g(0,0%)
0=a+ ﬁX,
> g(): probability distribution (the link between parameters and outcomes)

» §: central tendency (systematic component)
» o2: spread around that systematic component

The normal (linear) model
i~ N(M,-,J2)
pi = o+ BX;
» N(): the normal distribution (identity link; linear; OLS)

» u: mean predicted value
» o2: residual variance (variation of Y around y)
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Two sources of variation in the data Fundamental uncertainty

What are the residuals?

We are always wrong in our predictions, but how wrong are we
(in-sample)?

P residuals: difference between expected and observed i uasead
outcomes (Y; — i)

P a variable: one error / distance per observation in the
data

df <- df %>% mutate(
#Predict in sample H
preds = predict(mod2, newdata = .),
#Difference between ezpected and observed
residuals = LocalAssistants - preds

)
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Two sources of variation in the data Fundamental uncertainty

How to describe the residuals?

We describe the residuals by their spread (standard deviation/residual
standard error)

mean (df$residuals)
## [1] -9.8e-15

» mean: with an unbiased estimator, their average is 0

sd(df$residuals)
## [1] 3.1

» standard deviation: but their spread can be more or less high
» here, the average distance from their mean is is a staff size of 3.08 local
assistants.

= residual standard error
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Two sources of variation in the data Fundamental uncertainty

Where is it reported?
» we may have predicted an

) average staff size of 3.86 per
" MEP in candidate-centered
## Call:

## 1m(formula = LocalAssistants ~ OpenList + LaborCost, data =Sd¥§tems

#H T

## Residuals: » ... but individual MEPs

## Min 1Q Median 3Q Max . .

## -4.49 -1.94 -0.41 1.08 35.00 typ|cally deviate by 3.08

#

## Coefficients: Staﬂ:ers

## Estimate Std. Error t value Pr(>|tl) .

## (Intercept)  4.1266 0.2861 14.42 < 2e-16 «»»+« P from the variance, we can
## OpenList 0.8288 0.2278  3.64 0.00029 *xx*

## LaborCost  -0.0702 0.0102  -6.91  le-11 xx calculate the standard

# -

#4 Signif. codes: 0 ’+x+> 0.001 ++ 0.01 x> 0.05 ».> 0.1 > deviation, and thus prediction

## Residual standard error: 3.1 on 736 degrees of freedom |nterVa|S around the mean
## Multiple R-squared: 0.0814, Adjusted R-squared: 0.0789 d .
## F-statistic: 32.6 on 2 and 736 DF, p-value: 2.69e-14 prediction.

summary (mod2) $sigma
## [1] 3.1

» Residual standard error: 3.08
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Two sources of variation in the data Fundamental uncertainty

Conclusion: fundamental error

» important for predictions and model statistics
» not really for the uncertainty of the estimation of our effect
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Two sources of variation in the data Estimation uncertainty

Estimation uncertainty

Silje Synngve Lyder Hermansen Interpretation 16 februar 2026 45 /60



Two sources of variation in the data Estimation uncertainty

Estimation uncertainty

P> most research is about the effect of x on'y
P> so, we're interested in the uncertainty of 3
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Two sources of variation in the data Estimation uncertainty

The central limit theorem and sampling

A fiction: the assumptions underpinning the uncertainty of the
parameters

P assumption that data is a sample from a population

> we could sample many times

» we calculate the same parameter (e.g. mean, differences in means. .. )
in each sample

» they will vary, but will follow a normal distribution

= each parameter is a distribution with a mean and a standard deviation
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Two sources of variation in the data

Standard errors

summary (mod2)

##

## Call:

## lm(formula = LocalAssistants ~ OpenList
##

## Residuals:

## Min 1Q Median 3Q Max

## -4.49 -1.94 -0.41 1.08 35.00

##

## Coefficients:

## Estimate Std. Error t value
## (Intercept) 4.1266 0.2861  14.42
## OpenList 0.8288 0.2278 3.64
## LaborCost -0.0702 0.0102 -6.91
## -

## Signif. codes: 0 ’#%%’ 0.001 ’*x’ 0.01
##

Estimation uncertainty

> mean: average of all the

differences in means between the
two groups of MEPs: 0.95

» spread: the standard deviation of

+ LaborCost, data

Pr(>ltl)
< 2e-16 *x*
0.00029 *x¥x*
le-11 %%

’x’> 0.05 .’ 0.1

## Residual standard error: 3.1 on 736 degrees of freedom

## Multiple R-squared:
## F-statistic: 32.6 on 2 and 736 DF,

Silje Synngve Lyder Hermansen

0.0814, Adjusted R-squared:
p-value: 2.69e-14

0.0789

Interpretation

this distribution is 0.23

= a standard error is the
standard deviation of a hypo-
thetical distribution (parame-
ters)
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Two sources of variation in the data Colinearities

Colinearities
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Two sources of variation in the data Colinearities

Colinearities

Regression parameters may be correlated

mat <-vcov(mod2)
mat

## (Intercept) OpenList LaborCost
## (Intercept) 0.0819 -0.02846 -0.00244
## OpenList -0.0285 0.05191 0.00018
## LaborCost -0.0024 0.00018 0.00010

» reported in the variance-covariance matrix
» diagonal: the variance of the parameter.

> variance in effect of electoral system: 0 = 0.05
» standard error in effect of electoral system: Vo2 = 0.23

> off-diagonal: the covariance of the parameters
» low correlation between labor cost and electoral system
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Two sources of variation in the data Colinearities

Estimate

King et al. (2000) make two points

> find interesting scenarios when you interpret
> estimate the uncertainty for the scenarios including

» standard error (diagonal)
» covariance (off-diagonal)

= the correlation between variables may mean higher or lower uncertainty
than only using the standard error
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Two sources of variation in the data Colinearities

Simulation

They do this using simulation

P set scenario for all predictors

» draw from the distribution of parameters
> make prediction
P> repeat many times
» extract the information and report
mean
median
mode

standard deviation
plot the distribution!

vVVyYVYYVYY
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Two sources of variation in the data Colinearities

How we do it

We will see two ways of doing this in R

> ggeffects package: simulates scenarios for us and can be plotted
seamlessly — effect plots, coefplots and point predictions

> MASS package: the “manual” simulation from a multivariate normal

distribution using the variance-covariance matrix. — entire vector of
simulations; for other plots/purposes
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Two sources of variation in the data Colinearities

Recap I: interpretation

Once your model is estimated, ask what it can tell you.

P point estimates:

P interpret in numbers, text and figures.
P use scenarios

P uncertainty:

» fundamental : in residuals
P estimation: standard errors of coefficients
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Two sources of variation in the data

Colinearities

Recap Il: interpretation

Stages of interpretation

Uses

Coefficient

Hypothesis testing

Marginal effects

Prediction
First difference

Graphical display

direction and significance

size of the slope
coefficient; partial
scenario / increment in x
predicted outcomes; full
scenario

two or more predicted
outcomes:; full scenario
predicted outcomes along
entire range of x; full
scenario

sign of (; binary
uncertainty

Bx

p= o+ pBx
= a+ Bx
p=a+ Bx

Silje Synngve Lyder Hermansen
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Two sources of variation in the data Colinearities

For Thursday

At home

» work through the first R-notebook: it implement what | talked about
here
> finish reading: esp Berry et al.

In class

» we focus on second R-notebook and non-linear effects
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Study technique

Study technique
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Study technique

For this class

» learn by doing!
P all readings include R examples; code along!
> my R notebooks
» then play around with the concepts; also with your own data/former
exams

» dialogue with Al (ChatGPT, Claude)
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Study technique

What to ask and not to ask chat for?

R codes

» dont ask for complex codes

» requires quirey competence on your end
» you don't learn

P ask it to annotate your scripts

P explain what each line means
» dissect all code chunks you find and ask
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Study technique

What to ask and not to ask chat for?
Statistics

» don't ask for a summary of the reading

P it's not necessarily what we will focus on
» you don't learn

» ask for definitions

P ask it to define key concepts you don't understand while you read
> rephrase definitions and ask it this is a good understanding

» match with your readings

» upload the PDF and ask specific questions
» ask for examples, possibly with R codes

» interpretation

» copy-paste your model output and ask for an explainer
P use descriptive statistics to find interesting scenarios, ask it to help you
find a plain English intuitive sentence
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