Problems and opportunities: when observations are nested

Silje Synnøve Lyder Hermansen

2024-02-26

Silje Synnøve Lyder Hermansen Problems and opportunities: when observations are nested 2024-02-26 1/48

Where are we in the course?

Where are we in the course?

2/48

Where are we in the course?

We are entering the core of this course

- 1. R-skills (week 1-3)
- 2. Data structures (week 5-6, 14)
- 3. Limited and categorical outcome variables (GLMs) (week 7-13)

Where are we in the course? Recap: R-skills

Recap: R-skills

Recap: R-skills

Our work flow until now

- 1. **R-skills** (week 1-3)
- 2. Data structures (week 5-6, 14)
- 3. Limited and categorical outcome variables (GLMs) (week 7-13)

Recap of the last three weeks

I've introduced new concepts in class, you've honed them at home

week 1

- in class: core concepts in R: objects, functions, syntax, subsetting (guessing game + indexation)
- at home: build knowledge of the base R language, workflow

week 2

- in class: two new dialects (ggplot2, tidyverse)
- at home: more base R + new vocabulary

week 3

- in class
 - little new vocabulary, but new applications of it
 - core modeling concepts:
 - equations are expressions of a theory
 - prediction for interpretation: three stages of interpretation + interaction effects
 - prediction for model assessment (today)
- at home: hone these skills

Silje Synnøve Lyder Hermansen

Problems and opportunities: when observations are nested 2024-02-26

Where are we in the course? Where are we going?

Where are we going?

Two core assumptions in ordinary regression

Linear models (OLS) rely on two overarching assumptions that are often violated.

- 1. Assumption 1: outcomes (y) conditional on the predictors (x) are normally distributed (week 6-13)
- 2. Assumption 2: observations are independent and identically distributed (iid) (week 4-5, 14)
- \Rightarrow this course looks at strategies for when these are not satisfied

8/48

Core assumption 1: outcomes (y) conditional on the predictors (x) are normally distributed

- problem: limited and categorical outcome variables are not continuous
- solution:
 - recode the dependent variable and describe the data generating process w/probability distribution
 - choice of model depends on the data generating process e.g. logit, multinomial, ordinal, poisson, neg.bin, zero-inflated, coxph...
- \Rightarrow a topic for later

Assumption 2: Observations are not iid:

- problem: observations do not have equal probability of arriving in the sample
- solution:
 - a mindful strategy for how to leverage variation: hierarchical/nested data
 - strategies when our sample does not reflect the population: missing data
- \Rightarrow today: what do we do when observations are not iid?

We are entering the core of this course

- 1. R-skills (week 1-3)
- 2. Data structures (when observations are not iid) (week 5-6, 14)
- 3. Limited and categorical outcome variables (GLMs) (week 7-13)

The purpose of this course

 \Rightarrow Take 1 (negative): find solutions when the assumptions of the linear model are not satisfied

 \Rightarrow Take 2 (positive): pick models that are tailored to the data generating process

Negative take: Three assumptions of the linear model

Negative take: Three assumptions of the linear model

Our example: MEPs' local staff size

Our example: MEPs' local staff size

Let's express a theory that MEPs hire local staff to offset electoral disadvantages.

$$y_i = a + bx_i$$

- y: number of local assistants
- x: national party's vote share last election
- unit of observation: MEPs in 2014
- Hypothesis: b < 0

Interpreting: setting a scenario using descriptive statistics

An extreme interpretation is to do the min-max scenario, using descriptive statistics

##	Min. 1	st Qu.	Median	Mean	3rd Qu.	Max.	NA's
##	0.43	9.64	21.56	20.61	27.12	58.63	135

The party with the lowest support got less than 1% of the votes, while the party with the strongest support received 59%.

Interpreting: Applying the scenario for substantive effect Here, the marginal effect and first difference is the same (all effects are linear).

```
##
## Call ·
## lm(formula = y ~ x, data = df)
##
## Residuals:
               10 Median
##
      Min
                                30
                                       Max
## -2.4570 -1.9513 -0.9057 0.8749 17.6413
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.48554
                          0.21666 11.472
                                             <2e-16 ***
## x
              -0.01480
                          0.00898 -1.648 0.0999 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2,683 on 566 degrees of freedom
##
     (135 observations deleted due to missingness)
## Multiple R-squared: 0.004776. Adjusted R-squared: 0.003018
## F-statistic: 2.716 on 1 and 566 DF, p-value: 0.09988
```

The predicted difference in staff size between the two is 0.9 employees (-0.01 * 58.6)

Silje Synnøve Lyder Hermansen Problems and opportunities: when observations are nested 2024-02-26 17/48

Our example: MEPs' local staff size

Three assumptions of the linear model

The traditional way of assessing the linear model, is to check the residuals

- 1. residuals are normally distributed (unique to the OLS)
- 2. residuals are equally distributed over the range of y (homoscedasticity) (unique to the OLS)
- 3. residuals are not correlated with x (no omitted variable bias) (common for all regressions)

What are residuals?

Residuals are the difference between what we observed and expected (predicted)

$$y_i = a + bx_i + \epsilon_i$$

```
df <-
    df %>%
    mutate(
        #Predicted values
        predicted = predict(mod, df),
        #Difference between predicted and observed
        residuals = y - predicted,
        #Standardized spread is measured as standard deviations
        residuals_s = residuals/sd(residuals, ma.rm = T)
)
```

We often standardize them by dividing them by their own standard deviation.

Silje Synnøve Lyder Hermansen

Assumption 1: Residuals are normally distributed

Assumption 1: Residuals are normally distributed

Normally distributed errors allow you to do hypotheses tests

limitations to the limitation:

- categorical predictors: parameters are group averages
- many predictors: the model ends up with normal errors
- self-restraint in the interpretation: use scenarios that actually exist in the data

 \Rightarrow mostly important in small samples; least important overall

Assumption 1: Residuals are normally distributed

Distribution of my residuals

histograms give a first impression

Silje Synnøve Lyder Hermansen

22/48

Compare with a standard normal distribution

- another way is to compare the standardized residuals to a standard normal distribution
- a perfect correlation would follow the diagonal; here, we see the tails are off

Assumption 2: Residuals are homoscedastic

Assumption 2: Residuals are homoscedastic

The errors have an equal spread over the entire range of xs (i.e. your predicted y)

- are the standard errors correct
 - if not, they will be too high in some range, and too low elsewhere
 - does not relate to the parameter
- potential fix:
 - robust standard errors
 - random intercept model

 \Rightarrow If violated, you'll be over-confident in your results

25 / 48

Assumption 2: Residuals are homoscedastic

Spread of my residuals

we can plot the residuals against the predicted y; there should be no "fan"

 \Rightarrow a violation is often an early warning that the third assumption is violated as well

Assumption 3: Residuals are not correlated with x

Assumption 3: Residuals are not correlated with x

Residuals contain all the variation in y that could be explained by other covariates that are *not* currently in your model

A correlation is a sign of:

- misspesification of the y ~ x relationship (might actually be non-linear)
- omitted variable bias (spurious relationship/open backdoors): when z (omitted) causes both x and y.

Correlation between x and residuals: in numbers

testing with Pearson's R does not gives room for worry

```
##
##
    Pearson's product-moment correlation
##
## data: df$residuals s and df$x
## t = -9.3865e-16, df = 566, p-value = 1
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
\#\# -0.08226994 0.08226994
## sample estimates:
##
             cor
## -3.945436e-17
```

Silje Synnøve Lyder Hermansen Problems and opportunities: when observations are nested 2024-02-26 29/48

Correlation between x and residuals: visual

Negative take: Three assumptions of the linear model

Time to think

Time to think

Silje Synnøve Lyder Hermansen Problems and opportunities: when observations are nested 2024-02-26

Time to think

If you find signs of heteroscedasticity and/or correlation between ϵ and x, you should consider

- **observables:** are there control variables that I've omitted?
- non-observables: are there groups of observations that share the same "identity"?

Suggestion for omitted control variables: Labor cost

Would labor cost impact both vote share of a party and staff size?

Silje Synnøve Lyder Hermansen

Suggestion for omitted control variables: Electoral system

Would electoral system impact both vote share of a party and staff size?

Hunting for omitted variables: common identity

Would nationality impact both vote share of a party and staff size (and labor cost and electoral system)?

Silje Synnøve Lyder Hermansen

Problems and opportunities: when observations are nested 2024-02-26

Hunting for omitted variables: common identity

instead of thinking of the residuals as one common distribution, we can think of it as a set of distributions, one for each country

 \Rightarrow Random-intercept models do this by "labelling" the residuals according to group identities.

Positive take: Strategic leverage of variation

Positive take: Strategic leverage of variation

Positive take: Strategic leverage of variation

Phenomena are sometimes observed within a shared context

- we suspect that there are unobserved covariates that influence
 - the outcome and our predictors \rightarrow *spurious relationships/confounders*
 - ▶ our standard error → observations are too similar/too many
- examples:
 - geographic context:
 - patients in hospitals: same administrative procedures
 - unemployed in municipalities: same job market/economy
 - conflicts in countries: same competition for resources/power
 - time:
 - patients/unemployed/conflicts: years
 - time and space:
 - time-series cross-sectional/panel data
 - e.g. MEPs in years from countries

38 / 48

Data contains variation

Analysis is about strategically leveraging variation

- information
- noise:
 - bias: confounders
 - random noise: lack of precision
- \Rightarrow hierarchical models are very explicit about this

Our example: MEPs and their local investments

All Members of the European Parliament have the same budget for local staff

- time-series cross-section data with three groups:
 - MEPs are observed every 6 months (MEP)
 - there is variation in nationality (Nationality)
 - there is variation over time (Period)
- covariates at the group-level:
 - MEP: gender, nationality
 - Nationality: electoral system
 - Period: election, reform
- covariates across groups:
 - MEP/time: age
 - Nationality/time: labor cost

Nesting

We sometimes distinguish between nested and non-nested observations

- nested observations share group identity
 - observations in MEPs never change personal identity
 - MEPs never change nationality (almost)
- non-nested observations have cross-cutting identities
 - time is neither nested in nationality nor MEP

Positive take: Strategic leverage of variation

Our dependent variable: Local staff size

There is variation in the size of MEPs' local staff. What part of this variation am I interested in?

Silje Synnøve Lyder Hermansen

Groups of observations

Groups of observations

43/48

Groups of observations

Let's consider the distribution of local staff *within* and *between* each member state.

Silje Synnøve Lyder Hermansen

44 / 48

Variation and group averages

Let's consider the distribution of local staff in light of one of the groupings (individual)

##	# 1	A tibble: 28 x 6	6				
##		Nationality	У_j	sd_j	n_j	m_means	sd_means
##		<chr></chr>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>
##	1	Austria	1.79	1.65	170	2.34	1.76
##	2	Belgium	0.971	1.15	210	2.34	1.76
##	3	Bulgaria	4.13	2.77	169	2.34	1.76
##	4	Croatia	3.17	4.15	75	2.34	1.76
##	5	Cyprus	2.19	1.91	57	2.34	1.76
##	6	Czech Republic	2.45	2.04	198	2.34	1.76
##	7	Denmark	1.01	1.31	122	2.34	1.76
##	8	Estonia	1.12	0.961	50	2.34	1.76
##	9	Finland	1.02	0.917	131	2.34	1.76
##	10	France	1.38	1.28	611	2.34	1.76
##	# :	i 18 more rows					

each member state has

- a mean staff size (average staff): e.g.1.7941176
- a group size (number of observations): e.g.170

⁷⁶₇₆ within-national variation

 a standard deviation for each distribution: e.g.

between-national variation

- a mean of means (grand mean): 2.3381962
- the standard deviation of the group means: 1.7647195

Silje Synnøve Lyder Hermansen

Problems and opportunities? When group and label the variation 45/48

Groups of observations

Which of the variations do I leverage?

- within-group variation
 - calculate group means to factor out/control away between-group variation
 - regress residuals/remaining variation on within-group predictors
- \rightarrow fixed effects (e.g. on member states)
 - between-group variation
 - calculate group means
 - regress the group means on group-level predictors (e.g. electoral system)
- \rightarrow an aggregated data frame (e.g. using reframe())
 - both
 - linear model (pooled model)
 - hierarchical models
 - random intercepts account "label"
 - random intercepts with 2-level predictors

 \rightarrow ^{Sil}hierarchical models leverage both within and between group 2021 at lon 46/48

Groups of observations Why care?

Why care?

Silje Synnøve Lyder Hermansen Problems and opp

47 / 48

Why care?

When observations have these group identities (are nested), we run the risk of:

- too small standard errors (the sample N is too high, given that observations are not iid.)
- leveraging the "wrong" variation (e.g. the Simpson's paradox)