Multilevel/hierarchical models: Overview

Silje Synnøve Lyder Hermansen

2024-03-04

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Where are we in the course?

Where are we in the course?

2/50

Recap from Monday

When observations are not i.i.d. (i.e. they share a group identity), we will often consider alternatives to the ordinary linear model

- negative take: the assumptions of the linear model are not met.
 - non-normal residuals,
 - heteroscedastic residuals
 - correlation between x and residuals
- positive take: we have variation that we want to leverage strategically
 - within-group variation
 - between-group variation
 - more correct estimation of the standard errors
- \Rightarrow see this as an opportunity

Where are we in the course?

I pick my models as part of my research design

What are the most relevant correlations/variation given my theory?

- in experiments: you can create that variation and randomize the rest (cut out confounders)
- in observational studies: you'll have to "hunt" for the variation you want and control away the rest

Confounders

- Control variables that if absent lead to omitted variable bias satisfy three criteria:
 - z correlates with y
 - z correlates with x
 - z causes x and y (not intermediate/post-treatment)
 - \rightarrow even when 3 is not satisfied, it might be a sign of a common group identity (e.g. nationality)
- Group identities: observations done in the same context share many potential confounders
 - you might kill several birds with one stone

The principle

The principle

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

2024-03-04

6 / 50

The principle

We make the assumption that the residuals are drawn from a normal distribution

pooled models: a single distribution

$$y_i = a + bx_i + \epsilon_i$$

 $\epsilon_i \sim N(0, \sigma^2)$

- hierarchical models: add a hierarchy
 - assume groups are drawn from different distributions
 - their mean is drawn from a single distribution that "rules them all"

$$y_i = \mathbf{a} + b\mathbf{x}_i + \epsilon_{ji}$$

$$\epsilon_j \sim N(\alpha_j, \sigma_j^2)$$

$$\alpha_j \sim N(\mathbf{0}, \sigma_\alpha^2)$$

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

The principle

Untangling the parameters/variation

This allows me to untangle different sources of variation

- α_j : grouped mean of residuals: group intercept
- σ_{α}^2 : between-group variation
- σ_i^2 : group-level (within) variation

The promises of a hierarchical structure

This allows me to leverage different sources of variation

- leverage within-group variation:
 - by factoring out/control for between-group variation (σ_i^2)
- leverage between-group variation:
 - by running a second regression on the group means (α_{α}^2)
 - adjusts the standard errors
 - data augmentation: add variables from other sources that vary by group
 - predict out of sample even for new groups
- leverage both sources of variation
 - by borrowing from the more informative variation ("pooling"/"shrinkage")

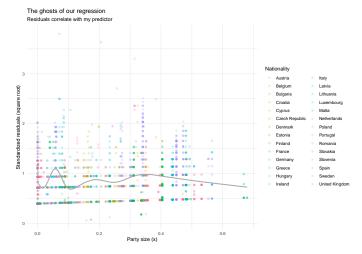
The principle Labeling the errors: grouped residuals

Labeling the errors: grouped residuals

Multilevel/hierarchical models: Overview

Labeling the errors: grouped residuals

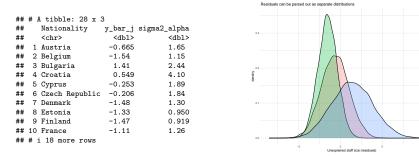
Our residuals have group identities that we can "label" as such.



Group means and group-level variation

Our residuals have group identities that we can "label" as such.

each group of residuals has a distribution with a mean and a spread



 \Rightarrow I can reconstruct their theoretical distribution by calculating the group mean and standard deviation

Silje Synnøve Lyder Hermansen

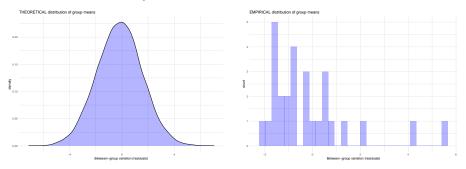
Multilevel/hierarchical models: Overview

2024-03-04

Austria Belgium

Between-group variation

The group means are drawn from a common normal distribution with a mean and a spread



 \Rightarrow I am treating the residuals as if they were a variable, so statistical theory can be applied

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Varying-intercepts regression: within-group variation

Varying-intercepts regression: within-group variation

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Varying-intercepts regression: within-group variation

The random/varying-intercept model:

- a common slope for all predictors
- separate intercepts for all group identities
- a common intercept (grand mean)

From labelled errors to varying intercepts

Instead of hiding the groupings in the residuals, we can report them as a series of intercepts (i.e. report their group means)

$$egin{array}{lll} y_i = m{a} + b x_i + lpha_j \ lpha_j \sim m{N}(0, \sigma_lpha^2) \end{array}$$

- a: the grand mean (mean of α means)
- α_j: varying intercepts (deviations from this grand mean)

 \Rightarrow useful for interpretation in R

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Varying-intercepts

Now, it is clear that I parse out (control for) between-group variation

- within-group variation the b coefficients report the effect of observation-level variables
- group-level variation is reported in the varying intercepts, it is the variation that:
 - has not been accounted for by my main effects
 - that can be attributed to group identities

Estimation in R: Varying national intercepts

Estimation in R: Varying national intercepts

Let's regress MEPs' investment in their district (y) on...

- x: their party's size in the national parliament (as a proxy for state funding).
- while controlling away between-national variation

Equation:

Staff size = $a + b \times Party$ size + $\alpha_{Nationality}$

 $y_i = a + bx_i + \alpha_{ii}$

Estimation:

library(lme4) mod.ran.int <- lmer(y ~ x + (1|Nationality),</pre> df)

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Reading the R output

Reading the R output

Reading the R output

```
summary(mod.ran.int)
```

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: v ~ x + (1 | Nationality)
     Data: df
##
##
## REML criterion at convergence: 31355.2
##
## Scaled residuals:
      Min
##
                10 Median
                                30
                                       Max
## -3 1127 -0 5387 -0 1435 0 3598 15 2357
##
## Bandom effects:
   Groups
                            Variance Std. Dev.
##
               Name
   Nationality (Intercept) 3.125
                                     1.768
##
   Residual
                            5.240
                                     2.289
##
## Number of obs: 6948, groups: Nationality, 28
##
## Fixed effects:
              Estimate Std. Error t value
##
## (Intercept) 2.6799
                          0.3386 7.915
               -1.6722
                        0.1678 -9.965
## x
##
## Correlation of Fixed Effects:
     (Intr)
## x -0.117
```

R refers to the residuals as "random effects"

 σ_{α}^2 : remaining between-group variance: 3.12

- standard deviation: 1.77
- the unexplained variation between groups

Residual: remaining within-group variance: 5.24

- standard deviation of within-group distribution: 2.29
- the unexplained variation within all groups

R refers to regression coefficients as "fixed effects"

a: intercept/grand mean: 2.68

- a hypothetical intercept for interpretation (mean of means)
- b: slope: -1.67
 - the marginal effect of party size (x)

Interpretation

Interpretation

Interpretation follows normal principles, but there are some complications:

- a. we now have two intercepts per scenario:
- the grand mean (a): for focus on general effect of x
- the group-level mean (α_j) : for description and prediction
- ▶ sum of the grand mean (a) and group-level mean (α_j) : for prediction
- b. all effects are linear
- so first-difference and marginal effects are the same

23 / 50

Interpreting marginal effects

The interpretation of the marginal effect is as with any linear model:

Table 1: Effect of state funding for parties on MEPs' local staff size

	Dependent variable:	
	у	
x	-1.672***	
	(0.168)	
Constant	2.680***	
	(0.339)	
Observations	6,948	
Log Likelihood	-15,677.610	
Akaike Inf. Crit.	31,363.210	
Bayesian Inf. Crit.	31,390.600	
Note:	*p<0.1; **p<0.05; ***p<0.0	

 \Rightarrow A 10% decrease in the national party's seat share would lead every 6th MEP to compensate by hiring an additional local staffer.

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Prediction

The varying intercepts are reported as deviations from the grand mean

fixef(mod.ran.int); ranef(mod.ran.int)

##	(Intercept)	x
##	2.679887 -	-1.672226
		(7
##		(Intercept)
##	Austria	-0.49518857
##	Belgium	-1.52249566
##	Bulgaria	1.54657524
##	Croatia	0.68267309
##	Cyprus	-0.05313986
##	Czech Republic	-0.10587832

Predicted local staff in Austria when national party is not in Parliament:

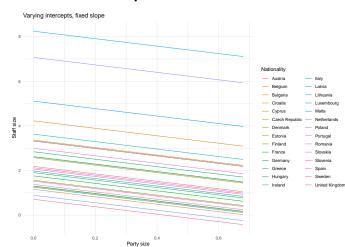
▶ 2.68 + -0.5 × 0 = 2.18

Predicted local staff in Austria when national party holds 10% of the seats

2.68 + -0.5 + -1.67 × 0.1 = 2.02

Multilevel/hierarchical models: Overview

Visualization Effect of x, the slope coefficient

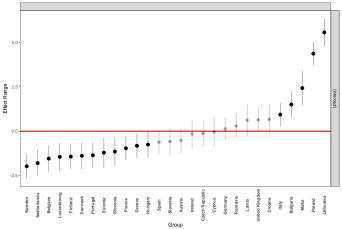


 \Rightarrow the slope is constant, but the intercept changes across nationalities

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Visualization: as distributions The intercepts are distributions in their own right



 $\Rightarrow each varying intercept has a point estimate (regression coefficient) and a distribution. They vary around a normal distribution with mean of 0 Silje Synnøve Lyder Hermansen Multilevel/hierarchical models: Overview 2024-03-04$

27 / 50

Varying slopes, varying intercepts

Varying slopes, varying intercepts

Multilevel/hierarchical models: Overview

Defintion

We can let the effect of z vary by group

$$y_i = a + b_1 x_i + c_j z_i + \alpha_j$$

c_j: varying slope (the effect of z varies by group)

• α_j : varying intercepts

we can rewrite to make this explicit

$$y_i = a + bx_i + \epsilon_{ij}$$

 $\epsilon_j \sim N(\alpha_j, \sigma_\alpha)$
 $\alpha_j = \lambda_j + c_j z_j$

\triangleright λ_j : varying intercepts

 \Rightarrow a series of regressions within the regression

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Estimation in R

the estimation is done as if it was an interaction effect

fixed-effects model with cross-level interaction

mod.ran.slope <- lm(y ~ x + ProxNatElection * Nationality, df)</pre>

random-effects model with varying slope

mod.ran.slope <- lmer(y ~ x + (ProxNatElection | Nationality)</pre>

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Varying slopes, varying intercepts Interpretation

Interpretation

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

2024-03-04

31 / 50

Marginal effects

We can read these coefficients as if they were from separate models

ranef(mod.ran.slope)

##		(Intercept)	ProxNatElection
##	Austria	-0.3201686	0.001073577
##	Belgium	-1.3944093	-0.018299157
##	Bulgaria	1.8027887	0.086786759
##	Croatia	0.9352286	0.058233060
##	Cyprus	0.1020429	-0.003477477
##	Czech Republic	0.1112017	0.024050889

MEPs from Austria hire on average 0.004 (= 0.001 * 4) assistants more immediately before an election compared to immediately after, while MEPs from Belgium hire on average 0.073 (= 0.018 * 4) fewer assistants.

These are negligible marginal effects.

Multilevel/hierarchical models: Overview

32 / 50

Prediction

The prediction is done per group, but follows normal rules

two intercepts:

grand mean + group-level intercept

one slope per group

```
## (Intercept)
                         x
     2.513035
                 -1.691321
##
##
                  (Intercept) ProxNatElection
                   -0.3201686
                                  0.001073577
## Austria
## Belgium
                  -1.3944093
                                 -0.018299157
## Bulgaria
                  1.8027887
                               0.086786759
## Croatia
                  0.9352286
                                  0.058233060
## Cyprus
                  0.1020429
                                 -0.003477477
## Czech Republic
                  0.1112017
                                  0.024050889
```

fixef(mod.ran.slope); ranef(mod.ran.slope)

Austria after election:

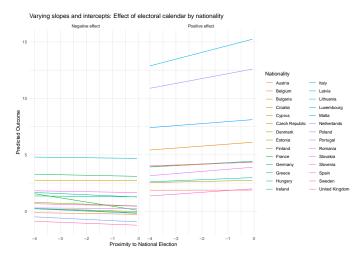
▶ 2.51 + -0.32 + 0.001 × -4 = 2.189

Austria before election:

▶ $2.51 + -0.32 + 0.001 \times 0 = 2.193$

Interpretation

Visualization



Level-2 regression: between-group variation

Level-2 regression: between-group variation

Level-2 regression: between-group variation Definition

Definition

Definition

We can think of the residuals/group intercepts as a variable in their own right

$$y_i = bx_i + \epsilon_{ji}$$

they are generated by draws from J number of distributions:

$$\epsilon_{ji} \sim N(\alpha_j, \sigma_\alpha^2)$$

... and therefore we can model them

$$\alpha_j = \mathbf{a} + d\mathbf{z}_j$$

- * a: a single intercept * d: a single slope coefficient
- \Rightarrow we run a second regression on the residuals

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

Implications

We explicitly model between-group variation

- z, the level-2 predictor only varies at the group level
 - standard errors for z reflect the number of groups
 - the more groups, the more the approach makes sense

data augmentation

- we can add information from other to the model
- contextual elements
- improves prediction

Estimation in R: Electoral system

Estimation in R: Electoral system

Let's add electoral system (z) as a predictor

it never changes in a country (in this study)

R handles this automatically

- same data frame
 - all variables that don't vary within groups are regressed as a level 2
- coefficients reported the same way
- estimation of coefficients and standard errors is different

mod.two.levels <- lmer(y ~ x + z + (1|Nationality), df)</pre>

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

2024-03-04

Reading the R output

Reading the R output

The R output looks exactly the same as for the varying-intercept model.

```
## Linear mixed model fit by REML ['lmerMod']
## Formula: y ~ x + z + (1 | Nationality)
##
     Data: df
##
## REML criterion at convergence: 31353.9
##
## Scaled residuals:
      Min
               10 Median
                                30
                                       Max
## -3.1145 -0.5388 -0.1434 0.3599 15.2339
##
## Random effects:
   Groups
                Name
                            Variance Std.Dev.
   Nationality (Intercept) 3.235
##
                                     1.799
   Residual
                            5.240
                                     2.289
##
## Number of obs: 6948, groups: Nationality, 28
##
## Fixed effects:
              Estimate Std. Error t value
## (Intercept) 2.5268
                          0.6030 4.191
               -1.6719
                         0.1678 -9.962
## x
                0.2263
                           0.7311
                                   0.310
## z
##
## Correlation of Fixed Effects:
##
     (Intr) x
## x -0.077
## z -0.821 0.013
```

The level-2 regression coefficient appears as "fixed effects"

- a: grand mean: 2.53
 - the "mean of means"
- d: slope: 0.23
 - the marginal effect of electoral system (z)

Check the change in between-group variance:

- the between-group variance (σ_{α}^2 , 3.23) should normally decrease
- ▶ it is not the case here (3.12 ≤ 3.23)

 \rightarrow increase in variance indicates "complexities" between levels (interactions)

Correlation of Fixed Effects:

negative correlation between predictor (z) and intercept (-0.82): high level of z correlates with low base-line value of y. Pooling

Pooling

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

2024-03-04

43 / 50

Pooling

What is the difference between a fixed-effects and a random-effects model, then?

the fixed-effects model only compares within groups

mod.fix <- lm(y ~ a + Nationality, df)</pre>

► the random-effects (hierarchical) model borrows information between and within groups → pools

mod.fix <- lmer(y ~ a + (1|Nationality), df)</pre>

 \Rightarrow both are varying-intercepts models

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

2024-03-04

What is pooling?

The hierarchical model calculates a weighted average of betweenand within-group variation for each coefficient

$$rac{n_j}{\sigma_y^2}ar{y}_j + rac{1}{\sigma_lpha^2}ar{y}_{all} \ rac{n_j}{\sigma_y^2} + rac{1}{\sigma_lpha^2}$$

- ▶ the denominator is there to normalize $\left(\frac{n_j}{\sigma_y^2} + \frac{1}{\sigma_\alpha^2}\right) \rightarrow ignore it$
- ► y_{all}: the pooled mean
 - its weight $\left(\frac{1}{\sigma_{\alpha}^2}\right)$
 - σ_{α}^2 : between-group variation
- y
 _j: the group mean
 - its weight $\left(\frac{n_j}{\sigma_v^2}\right)$
 - n_j: size of the group (number of observations)
 - σ_y^2 : residual variation not explained by the between-group variation

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

The weights in pooling

The hierarchical model calculates a weighted average of betweenand within-group variation for each coefficient

$$\frac{\frac{n_j}{\sigma_y^2}\bar{y_j} + \frac{1}{\sigma_\alpha^2}\bar{y}_{\mathsf{all}}}{\frac{n_j}{\sigma_y^2} + \frac{1}{\sigma_\alpha^2}}$$

- σ_{α}^2 : as the **between-group variation** increases, the weight of the pooled mean decreases
- n_j: as the size of the group (number of observations) increases, the weight of the non-pooled (within-) group mean increases

Pooling

What to do?

Sooo... what do I choose?

Condition	Fixed	Random	Advantage	Limitation
plenty of within-group variation	х		stringent comparison	no weighing of groups
		x	weighing by group size	groups should be distinct (between-group variation is high)
variables only vary by group		x	standard errors are corrected	fixed effects will be non-identified
mix of between- and within-group variation		x	pooling/borrows information	no idea where the info comes from
data augmentation/prediction		×	infers from group-level predictors	fixed effects don't perform out of sample

Multilevel/hierarchical models: Overview

2024-03-04

How many groups and how many observations? Random/hierarchical model

- if you want level 2 variables:
 - **•** many groups \rightarrow you run a second regression
- if you want within-group variation:
 - ► distinct groups (large between-group variation, size matters less) → similar to fixed-effects
 - ▶ not distinct groups (little between-group variation) → similar to pooled model
- if you think the smaller groups are less representative
 - ► larger groups count more for within-group variation → unbalanced panels

Fixed-effects model

► only the observations with variation within the groups count towards the estimate → your N may be deceptive

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

2024-03-04 48 / 50

Recap

Recap

Silje Synnøve Lyder Hermansen

Multilevel/hierarchical models: Overview

2024-03-04

49 / 50

Recap

Hierarchical models leverage variation according to the structure in the data (groupings)

- varying-intercepts models (fixed and random effects)
 - one slope, but control for group identities
- varying-intercept, varying slope (fixed and random effects)
 - one intercept and one slope per group,
- level-2 regression (random effects)
 - one slope per group predictor, but adjusts standard errors,
- pooling (all random effects models)
 - regression coefficients are a weighted average of between- and within-group variation

 \Rightarrow Pick the variation you want, then pick the model you need.