RDD and diff-in-diff

Silje Synnøve Lyder Hermansen

08-12-2020

Silje Synnøve Lyder Hermansen

RDD and diff-in-diff

08-12-2020 1 / 64

Regression discontinuity design (RDD)

Basic assumption

RDD assumes a running variable (x) with a cut point (c) beyond which treatment is assigned (D).

$$D_i = \begin{cases} 1 & if \quad x_i \geq c \\ 0 & if \quad x_i < c \end{cases}$$
(1)

Distinction

It has a flavor of logit or propensity scores, but there are some differences:

- logit : x (not y) is not latent and we know the cutpoint: Both are observed and included as a *predictors*.
- matching : we have no control/treatment group. However, we assume that units on either side of the treatment are increasingly similar as their x is similar.
- \Rightarrow Supposes clear rules with little administrative discretion.

Administrative data are perfect: You have some rule that kicks in at a specific threshold for otherwise almost identical observations.

- school test scores on school admission, restrictions on class size
- legal drinking age on alcohol related deaths
- election of candidates in close races

Two ways of understanding RDD

Individuals close to the threshold are interchangeable

 \rightarrow in a small window, you have a treatment and a control group.

- x is a bottleneck: the relationship between D and Y is confounded by x, but all other confounders only influence Y through x.
- \rightarrow conditioning on x is sufficient to isolate the causal effect.

Two ways of understanding RDD

X is a confounder ...so we only control for X

Silje Synnøve Lyder Hermansen

Two designs

We distinguish between two designs depending on how probable the treatment is:

- **sharp** RD: assignment is *deterministic*
- fuzzy RD: assignment is probabilistic

A visual representation

08-12-2020 9 / 64

Sharp RDD

Sharp RDD

Silje Synnøve Lyder Hermansen

Sharp RDD The basic model

The basic model

The basic model

We assume the relationship between x and y is linear and the treatment is deterministic

$$y_i = \alpha + \rho \times D_i + \gamma \times x_1 + e_i \tag{2}$$

 \Rightarrow The treatment is reported by ρ

```
What is the treatment effect of legal drinking age (D) on
deaths (y)?
##Load the data from my website: file df_ch4.rda
download.file(
   "https://siljehermansen.github.io/teaching/stv4020b/df_ch4.r
        "df_ch4.rda")
```

```
load("df_ch4.rda")
```

```
#Outcome: y
df$all
```

```
#Running variable x
df$age <- df$agecell - 21 #Center at cut point</pre>
```

```
#Recoding into a treatment variable D
df$over21 <- ifelse(df$agecell >= 21 , 1, 0)
```

Silje Synnøve Lyder Hermansen

RDD and diff-in-diff

What is the treatment effect of legal drinking age (D) on deaths (y)?

What is the treatment effect of legal drinking age (D) on deaths (v)?
#Results
summary(mod1)

Call: ## lm(formula = all ~ over21 + age, data = df) ## ## Residuals: ## Min 10 Median ЗQ Max ## -5.0559 -1.8483 0.1149 1.4909 5.8043 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 91.8414 0.8050 114.083 < 2e-16 *** ## over21 7.6627 1.4403 5.320 3.15e-06 *** -0.9747 0.6325 - 1.541## age 0.13"Silje Synnøve Lyder Hermansen RDD and diff-in-diff 08-12-2020

15 / 64

What is the treatment effect of legal drinking age (D) on deaths (y)?

```
#What is the treatment effect?
rho = mod1$coefficients["over21"]
paste("The treatment effect is",
    round(rho, 1),
    "more young people dying (per 100.000)",
    "when legal drinking age of 21 years is reached.")
```

[1] "The treatment effect is 7.7 more young people dying (]

What is the treatment effect of legal drinking age (D) on deaths (y)?

Is that all?

This is true on two conditions

- 1. no omitted variable bias: x must capture all influence on D.
- 2. the continuity assumption: x must have a continuous effect on y

Sharp RDD The continuity assumption

The continuity assumption

The continuity assumption

Sometimes we may pick up a smooth non-linear change by dummy coding

... that's not a regression discontinuity.

Ensuring linear effect

We can obtain a linear effect in two ways:

- recode the $x \rightarrow parametric approach$
- consider a sufficiently small window \rightarrow *non-parametric* approach

Ensuring linear effect: parametric approach

Recode the x

We can create a curvilinear effect of x using polynomials (e.g.:)

$$y_i = \alpha + \rho D_i + \gamma_1 x_i + \gamma_2 x_i^2 \tag{3}$$

Recode the x: polynomials

We can create a curvilinear effect of x using polynomials (e.g.:)

$$y_i = \alpha + \rho D_i + \gamma_1 x_i + \gamma_2 x_i^2 \tag{4}$$

 \Rightarrow Here, x has a curved effect on both sides of the treatment.

Silje Synnøve Lyder Hermansen

RDD and diff-in-diff

08-12-2020 24 / 64

Recode the x: polynomial

Treatment effect of legal drinking

Recode the x: interaction

We can assume x has different effects on each side of the treatment

$$y_i = \alpha + \rho D_i + \gamma x_i + \delta x_i D_i \tag{5}$$

 \Rightarrow we center the x on the cutpoint $(x_i - c) \rightarrow \rho$ still reports the change at the cutpoint.

In R:

Silje Synnøve Lyder Hermansen

Recode the x: interaction

Treatment effect of legal drinking

Extrapolation

We do this to estimate the effect at the cutpoint (ρ)

but we can also extrapolate y beyond the cutpoint with x: $\rho + \delta(x - c)$

Ensuring linear effect: non-parametric approach

Bandwidth

- recoding the x is a parametric approach.
- subsetting the data to tweak the window around the cutpoint is a non-parametric approach.

 \Rightarrow As the window becomes smaller, the shape of the x-effect matters less and less.

Bandwidth : the idea

If the span of \boldsymbol{x} around \boldsymbol{c} is sufficiently small, there is no problem with non-linearity

There's a tradeoff between linearity and statistical power (we need sufficient N).

Bandwidth : how do we choose it?

We try out different bandwidths

```
We can do it by hand
mod4 <- lm(all ~ over21 + age,
df[df$agecell > 20 & df$agecell < 22,])</p>
```

 \Rightarrow When you narrow down, do you get a weaker or stronger effect?

Bandwidth : how do we choose it?

When narrowing down the window around the cutpoint, we'd expect a stronger effect.

	Dependent variable: all	
	(1)	(2)
over21	7.663***	9.753***
	(1.440)	(1.934)
age	-0.975	-3.256*
	(0.632)	(1.700)
Constant	91.841***	91.713***
	(0.805)	(1.081)
Observations	48	24
R ²	0.595	0.703
Adjusted R ²	0.577	0.675
Residual Std. Error	2.493 (df = 45)	2.362 (df = 21)
F Statistic	32.995 ^{***} (df = 2; 45)	24.838 ^{***} (df = 2; 21)
Note:	*p<0.1; **p<0.05; ***p<0.01	

Table 1:

\Rightarrow A trade-off with size of the data (and thus statistical power).

Silje Synnøve Lyder Hermansen

RDD and diff-in-diff

Bandwidth : how do we choose it?

We try out different bandwidths

- We can do it by hand
- ... or we can make an algorithm do it:
 - run a local weighted regression line
 - bandwidth is estimated accordingly

 \Rightarrow the point is to show robustness, not p-hack!

Omited variable bias

We want to make certain that

- ► D has an effect on y :
- \rightarrow is there really a cutpoint? Try out placebos!
 - treatment was indeed assigned at the cutpoint:
- \rightarrow is there unnatural clustering around one side?
 - treatment has impact on outcome but not other pre-treatment covariates
- \rightarrow check for balance/is there a similar "bump" for covariates? (bad news)

Fuzzy RD

Fuzzy RD

Silje Synnøve Lyder Hermansen

Fuzzy RD

Often the D increases the probability of a treatment, but we don't know!

 \Rightarrow This is a Instrumental Variable approach (more on Thursday)

Fuzzy RD The exam school example

The exam school example

The exam school example: plan A

What's the effect of being around other good students on my 7th grade test scores?

$$\flat \ y = \alpha + \beta_1 \bar{x} + \beta_2 x + e$$

- \blacktriangleright \bar{x} : classmates' test scores in 4th grade (pre-treatment)
- x: my test scores in 4th grade

The exam school example: plan A

What's the effect of being around other good students on my 7th grade test scores?

- $\flat \ y = \alpha + \beta_1 \bar{x} + \beta_2 x + e$
- \blacktriangleright \bar{x} : classmates' test scores in 4th grade (pre-treatment)
- x: my test scores in 4th grade
- \Rightarrow This is not a random assignment!

The exam school example: plan B

Let's use the re-shuffeling due to exam schools.

- $\triangleright \ y = \alpha + \beta_1 D + \beta_2 R + e$
- D: my assignment to a school
- R: my admittance exam results
- \Rightarrow This is a even less random assignment!

The exam school example: plan B

Let's use the re-shuffeling due to exam schools.

- $\blacktriangleright \quad \mathbf{y} = \alpha + \beta_1 D + \beta_2 R + \mathbf{e}$
- D: my assignment to a school
- R: my admittance exam results

 \Rightarrow This is a even less random assignment! (although it is the reduced-form of plan C)

The exam school example: plan C

Yes, let's use the re-shuffling due to exam schools.

$$\quad \mathbf{\bar{x}} = \alpha + \beta_1 \mathbf{D} + \beta_2 \mathbf{R} + \mathbf{e}$$

 \rightarrow predicted treatment assignment (\tilde{x}) as a function of my admittance scores (R) and the resulting admittance (or not) (D).

$$\blacktriangleright y = \alpha + \gamma \tilde{x} + \beta R + e$$

 \rightarrow insert the part of classmate abilities due to my school admittance and control away my admittance scores (*R*)

 \Rightarrow The treatment effect of classmates is expressed by γ !

In brief

x has a unique effect on D. I'm interested in the effect of \bar{x} on y, but x is completely endogenous:

 $\flat \ y = \alpha + \phi \bar{x} + \beta_2 x + e$

I use treatment as an instrument. We do this in two steps

• step 1:
$$\bar{x} = \alpha_1 + \phi D + \beta_1 x + e_1$$

• step 2:
$$y = \alpha_2 + \gamma \tilde{x} + \beta_2 x + e_2$$

 $\Rightarrow \gamma$ is the causal effect of D in a fuzzy design.

Differences-in-differences

Differences-in-differences

Definition: Comparing two differences

Definition: Differences-in-differences

Treatment and control groups may differ in many ways (they are not randomly assigned)

- Pre-treatment: They move in parallel
- Post-treatment: They diverge
- \Rightarrow Treatment effect is that difference
- \Rightarrow Assumes they would have otherwise continued in parallel

What differences?

Diff-in-diff is based on two comparisons

- the difference pre- and post treatement within each unit
- the difference between the treatment and control groups
- \Rightarrow based on panel data (units are observed several times).

Example: States' monetary policy and number of banks

Take the differences between number of banks in two districts in Missisippi

- **Pre-treatment:** District 6 had 135 banks, while district 8 had 165.
- Treatment: District 6 provided money to banks, while district 8 did not.
- Post-treatment: After a year district 6 had 121 banks, while district 8 had 132
- \Rightarrow What was the treatment effect?

Example: States' monetary policy and number of banks

The two districts started out differently

within-unit difference: Number of banks before and after the crisis in each district.

District 6: 121 - 135 = -14; District 8: 132 - 165 = -33

- between-unit differences: take the difference between the two.
- -14 (-33) = 19
- \Rightarrow Basically a 2-by-2 table

Differences-in-differences How to do it?

How to do it?

Interaction effects

In a regression, these differences are represented by an interaction term between two dummies

$$y_i = \alpha + \beta_1 T_i + \beta_2 P + \beta_3 T_i P_i \tag{6}$$

P represents post-treatment effect: differences *within* units
 T represents the treatment group: differences *between* units
 β₃ is the causal effect

Data

Data requirements

- Requires panel data \rightarrow which means correcting the standard errors.
- Common panel types: state-year/administrative unit-time period; people over time ...
- \Rightarrow we want to know the trend before and after the break

Another example: drinking age and death

Another example: drinking age and death

Does the legal drinking age has an effect on death rates among the young?

- ▶ y is number of deaths per 100 000
- P is post-treatment dummy
- T is dummies for states
- trend is year dummies

```
##Load the data from my website: file df_ch5.rda
download.file(
    "https://siljehermansen.github.io/teaching/stv4020b/df_ch5.r
    "df_ch5.rda")
```

Another example: step $1 \rightarrow$ calculate differences

The authors have two tricks:

- Hardcode the interaction effect (dummy before/after treatment)
- They remove the intercept to retain all dummies

```
#Load the data
load("df ch5.rda")
##with intercept
mod <- lm(mrate ~ legal +
              state +
              year_fct,
           df)
##without intercept; with all dummies
mod <- lm(mrate ~ 0 +
              legal +
              state +
              year fct,
 Silje Synnøve Lyder Hermansen
                             RDD and diff-in-diff
```

Another example: step $2 \rightarrow$ calculate errors

Calculate robust standard errors:

library(clubSandwich)

Warning: package 'clubSandwich' was built under R version 4

Registered S3 method overwritten by 'clubSandwich':

- ## method from
- ## bread.mlm sandwich

Silje Synnøve Lyder Hermansen

Another example: step $3 \rightarrow$ interpretation

Display the results and interpret:

Another example: step $3 \rightarrow$ interpretation

Table 2: Death rates among young as a function of legal drinking age

	Dependent variable:
	mrate
Legal drinking age (causal effect)	10.804** (4.479)
Observations R^2	714 0.986
Adjusted R ²	0.985
Residual Std. Error	17.339 (df = 649)
F Statistic	726.005*** (df = 65; 649)
Note:	*p<0.1; **p<0.05; ***p<0.01

 \Rightarrow What did we find?

Silje Synnøve Lyder Hermansen

The parallel trends assumption

Main assumption

Units can be different, but – absent treatment – they must follow the same trend (hence the panel data).

 \blacktriangleright The regression assumes a counterfactual \rightarrow remember the extrapolation.

Main assumption: The way around

When we have several treated and control units they can follow .

- individual trend lines...
- that are modeled as deviations from one unique trend

Main assumption: The way around

When we have several treated and control units they can follow .

- individual trend lines...
- ... that are modelled as deviations from one unique trend

 \Rightarrow We do that with an interaction effect!

```
mod <- lm(mrate ~ 0 +
    legal +
    state *
    year_fct,
    df)</pre>
```

Last fix

If our units are in fact several units (say, populations in states)

we can use weights

 \Rightarrow There's a trade-off: treatment is at the unit level, statistical power at the subunit level.