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Let’s touch base

Figure 1: Many of you still have doubts about your skills. Use our reading groups
and the feedback we give!
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Let’s touch base

Figure 2: More of you are more confident now than last week, but not everyone.
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GLM: A recap

Reminder: What is a GLM?

Regressions aim to describe (a linear) relationship between x and y
with one number, β.

I Assumes a continuous and unbounded variable.
I When y is neither (e.g. binary), we relied on a latent continuous

variable
I To approximate the latent variable, we calculated the logodds (i.e. we

compare)

⇒ Probability distribution maps unobserved variable to observed
outcomes.
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Ordered logistic regression
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Ordered logistic regression

What is an ordered variable?

A ranked variable with unknown distance between categories.

I Often the result of binning: Close connection to latent formulation.
I We can choose how to treat it: As linear, categorical or ordinal.

⇒ estimate a single set of regression parameters, but keep the information
on the order without assuming a continuous variable.
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Ordered logistic regression

Two conceptions of ordered logisitc regression

There are two ways of uncerstanding the ordered logit:

I Latent variable: useful for interpretation.
I Parallel regressions: useful for understanding and checking estimation.
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Ordered logistic regression Latent variable approach: cutpoints
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Ordered logistic regression Latent variable approach: cutpoints

Cutpoints

We rely on cutpoints to slice up the latent variable and determine
outcomes

I Binomial logistic: One cutpoint. → Rarely estimated.
I Ordinal logistic: Serveral cutpoints. → Explicit.

⇒ Model estimates both regression parameters (β) and cutpoints (τ).
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Ordered logistic regression Latent variable approach: cutpoints

A series of cutpoints
You are in the category m when the latent variable is between its
two cutpoints: τm−1 < y? < τm

Figure 3: Slicing up a latent variable
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Ordered logistic regression Latent variable approach: cutpoints

The regression coefficients

The model calculates the odds of being lower than τm

I The first cutpoint (τ0) is 0 (−inf ): you cant be lower than the lowest.
I The last cutpoint is 1 (+inf ): all observations are in some category.
I You end up with m − 1 cutpoints.
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Ordered logistic regression Latent variable approach: cutpoints

The regression output

The regression output reports both β and τ

I Regression coefficient β is reported in relation to upper cutpoint of
the category: τm − βxi

I Cutpoints serve also as intercepts.
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Ordered logistic regression Latent variable approach: cutpoints

The predicted value

The predicted probability of being in category m:

Pr(yi = m) = exp(τm − βxi)
1 + exp(τm − βxi)

− exp(τm−1 − βxi)
1 + exp(τm−1 − βxi)

(1)
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Ordered logistic regression An example: Attitudes towards redistribution

An example: Attitudes towards redistribution

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 17-11-2020 15 / 55



Ordered logistic regression An example: Attitudes towards redistribution

An example:

ESS respondents (that voted H or FrP) are asked to what extent they
believe the state should engage in redistribution (1 = disagree; 5 = agree).

#Load in data
df <- read.table(

"https://siljehermansen.github.io/teaching/stv4020b/kap10.txt")

#Check distribution
barplot(table(df$Utjevn))
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Ordered logistic regression An example: Attitudes towards redistribution

An example:
ESS respondents (that voted H or FrP) are asked to what extent they
believe the state should engage in redistribution (1 = disagree; 5 = agree).

Figure 4: Attitudes towards redistribution is an ordered variable
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Ordered logistic regression An example: Attitudes towards redistribution

Attitudes towards redistribution as a function of income

#Library for ordinal regression
library(MASS)
#Recode into ordered factor
df$Utjevn.ord <- as.ordered(as.factor(df$Utjevn))
#Run regression
mod.ord <- polr(Utjevn.ord ~ Inntekt,

df,
method = "logistic",
Hess = TRUE)

summary(mod.ord)
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Ordered logistic regression An example: Attitudes towards redistribution

Attitudes towards redistribution as a function of income

## Call:
## polr(formula = Utjevn.ord ~ Inntekt, data = df, Hess = TRUE,
## method = "logistic")
##
## Coefficients:
## Value Std. Error t value
## Inntekt 0.08387 0.03128 2.681
##
## Intercepts:
## Value Std. Error t value
## 1|2 -2.0119 0.2422 -8.3052
## 2|3 0.3029 0.1994 1.5190
## 3|4 1.4724 0.2107 6.9883
## 4|5 3.9305 0.3317 11.8496
##
## Residual Deviance: 1218.94
## AIC: 1228.94
## (17 observations deleted due to missingness)
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Ordered logistic regression An example: Attitudes towards redistribution

We learn two things from the regression output

Regression coefficient reports effect of x on probability to be placed
one category higher

I Effect in logodds: 0.084
I We can backtransform to one unit increase in x : (exp(β)− 1)× 100

= 9% increase in likelihood of a higher category.

⇒ Hypothesis testing as in a binomial logit
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Ordered logistic regression An example: Attitudes towards redistribution

We learn two things from the regression output

We have one intercept per cutpoint

I e.g.: intercept of passing from 1 to 2 is -2.012
I e.g.: intercept is reported as significant (with standard errors)

⇒ The model does a fair job in distinguishing between categories.
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Ordered logistic regression An example: Attitudes towards redistribution

Predicted scenarios

We interpret predicted probability by choosing one level of x and
one category (two cutpoints) of y : What is the probability of m?

Pr(yi = m) = exp(τm − βxi)
1 + exp(τm − βxi)

− exp(τm−1 − βxi)
1 + exp(τm−1 − βxi)

(2)
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Ordered logistic regression An example: Attitudes towards redistribution

Example

Let’s choose low-income respondents (x = 1) and category 3 (diff
between cutpoints 2 and 3)

z = mod.ord$zeta
x = 1

logodds1 <- z[3] - coefficients(mod.ord) * x
logodds2 <- z[3-1] - coefficients(mod.ord) * x
## Probabilities
p1 <- exp(logodds1)/(1 + exp(logodds1)) #3|4 or lower
p2 <- exp(logodds2)/(1 + exp(logodds2)) #2|3 or lower
## Difference between cutpoints
p1 - p2 #cat 3
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Ordered logistic regression An example: Attitudes towards redistribution

An example

Predicted proportion in category

paste(round((p1-p2)*100),
"% of low-income respondents are predicted to answer x = 3 (’neutral’)." )

[1] “25 % of low-income respondents are predicted to answer x = 3 (‘neutral’).”

Cumulative probability

paste(round((p1)*100),
"% of low-income respondents are predicted to answer x = 3 (’neutral’) or lower to the question of whether they support redistribution." )

[1] “80 % of low-income respondents are predicted to answer x = 3 (‘neutral’) or lower
to the question of whether they support redistribution.”
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Ordered logistic regression An example: Attitudes towards redistribution

Two ways of viewing the slicing

We can report the probability (e.g. 0.25) of ending up between two
cutpoints, or the cumulative probability (e.g. 0.8) to be below each point.
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Ordered logistic regression An example: Attitudes towards redistribution

Exercice:

Increase the τ (z) within each value of Income (x)

##Create empty plot
plot(y = 0,

x = 0,
axes = FALSE,
xlim = c(1,4),
ylim = c(0,1),
ylab = "Probability of z or below",
xlab = "Thresholds",
main = "Cumulative probability \nof support for redistribution",
type = "n")

axis(1, at = 1:length(p1),
labels = names(p1))

axis(2)
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Ordered logistic regression An example: Attitudes towards redistribution

Exercice:
Increase the τ (z) within each value of Income (x)
#Set values for prediction
x = 10 #Let this go from 1 to 10; check the shape of 10
z = mod.ord$zeta
#Logodds
logodds1 <- z - coefficients(mod.ord) * x
#Probabilities
p1 <- exp(logodds1)/(1 + exp(logodds1)) #3|4 or lower

#Plot probabilities
lines(y = p1,

x = 1:length(p1),
type = "b")

#Set legend (report x-value)
legend("topleft",

bty = "n",
cex = 0.8,

paste("Income = ", x))

#Plot probabilities
text(y = p1+0.06,

x = 1:length(p1),
labels = round(p1,2),
cex = 0.8)
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Ordered logistic regression Parallel regressions approach: for assessment
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Ordered logistic regression Parallel regressions approach: for assessment

Parallel regressions approach

The parallel regression approach is useful to understand how the
model is estimated

I The y is recoded into m − 1 dummy variables indicating if y ≤ m
I Run a series of regressions where all β are fixed (i.e.: the same).

⇒ This is also useful when we assess the model
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Ordered logistic regression How good is our model?

How good is our model?
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Ordered logistic regression How good is our model?

The basic assumption

The basic assumption is that all parallel regressions have (about)
the same regression coefficient

I Check the mean of the predictor for each value of y . Does it trend?

tapply(df$Inntekt, df$Utjevn, mean, na.rm = T)

## 1 2 3 4 5
## 4.742857 5.547059 5.438017 6.205607 6.571429

I Run parallel regressions without contstraint on β. Are they similar?
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Ordered logistic regression An example of parallel regressions
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Ordered logistic regression An example of parallel regressions

Recode into dummies

The dummies flag cases below a cumulative threshold of outcomes

##
df$ut1 <- ifelse(df$Utjevn > 1, 1 , 0) #2 or above
df$ut2 <- ifelse(df$Utjevn > 2, 1 , 0) #3 or above
df$ut3 <- ifelse(df$Utjevn > 3, 1 , 0) #4 or above
df$ut4 <- ifelse(df$Utjevn > 4, 1 , 0) #5

⇒ The model then runs 4 regressions where β reports an aggregated value
from all 4 coefficients (think: weigted mean).
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Ordered logistic regression An example of parallel regressions

Run four regressions

Let’s examplify with the parallel regressions without fixed β:

##Parallel regressions:
mod1 <- glm(ut1 ~ Inntekt, df, family = "binomial")
mod2 <- glm(ut2 ~ Inntekt, df, family = "binomial")
mod3 <- glm(ut3 ~ Inntekt, df, family = "binomial")
mod4 <- glm(ut4 ~ Inntekt, df, family = "binomial")
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Ordered logistic regression An example of parallel regressions

Compare coefficients from four regressions
##
## =======================================================
## Dependent variable:
## -------------------------------------
## ut1 ut2 ut3 ut4
## (1) (2) (3) (4)
## -------------------------------------------------------
## Inntekt 0.133** 0.057* 0.109*** 0.127
## (0.067) (0.035) (0.039) (0.101)
##
## Constant 1.772*** -0.155 -1.629*** -4.204***
## (0.367) (0.216) (0.259) (0.711)
##
## -------------------------------------------------------
## Observations 447 447 447 447
## Log Likelihood -120.685 -306.937 -257.053 -61.452
## Akaike Inf. Crit. 245.370 617.875 518.105 126.903
## =======================================================
## Note: *p<0.1; **p<0.05; ***p<0.01
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Ordered logistic regression An example of parallel regressions

Coefficient should be a weighted average from four
regressions

These βs are weighted by the number of observations in each category:

table(df$Utjevn)

##
## 1 2 3 4 5
## 40 174 127 108 14
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Ordered logistic regression An example of parallel regressions

We can plot the βs for comparison:

results <- rbind(summary(mod1)$coefficients[2, c(1,2)],
summary(mod2)$coefficients[2, c(1,2)],
summary(mod3)$coefficients[2, c(1,2)],
summary(mod4)$coefficients[2, c(1,2)])

thresholds <- c("1|2","2|3","3|4","4|5")
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Ordered logistic regression An example of parallel regressions

We can plot the βs for comparison:

ggplot() +
geom_point(aes(y = results[, "Estimate"],

x = thresholds)) +
geom_smooth(aes(y = results[, "Estimate"],

x = 1:4),
lty = 2,
lwd = 0.5) +

geom_segment(aes(x = 1:4,
xend = 1:4,
y = results[, "Estimate"]-results[, "Std. Error"]*1.96,
yend = results[, "Estimate"]+results[, "Std. Error"]*1.96)) +

theme_bw() +
ylim(c(results[, "Estimate"][2]-results[, "Std. Error"][4]*2,

results[, "Estimate"][4]+results[, "Std. Error"][4]*2)) +
geom_hline(yintercept = mod.ord$coefficients,

lty = 3) +
geom_text(aes(y = mod.ord$coefficients-0.05,

x = 3.5,
label = paste("\u03b2 =", round(mod.ord$coefficients,2))
),

parse = F) +
labs(title = "Beta coefficients from 4 regressions") +
ylab("Coefficients") +
xlab("Models 1 to 4")

Silje Synnøve Lyder Hermansen Multinomial and ordered logits 17-11-2020 38 / 55



Ordered logistic regression An example of parallel regressions

We can plot the βs for comparison:
The overall β is 0.08. If the ordered model describes the data well, then
all the unconstrained βs should ressemble that description.

ß = 0.08
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Ordered logistic regression An example of parallel regressions

A visual inspection
A more visual way of checking the “parallel lines assumption” is to inspect
if the regression lines are parallel.
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Ordered logistic regression An example of parallel regressions

When is it smart to run an ordered logit?

I You have few categories
I Fairly equal spread of observations between categories
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Discrete choice models

Dependent variable: nominal

The discrete choice models describe mutually exclusive choices.

I The choice variable is nominal: we cannot rank it
I Our appreciation of it is continuous. Two sets of models:

I Multinomial: Models chooser characteristics
I Conditional logit: Models choice characteristics
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Discrete choice models Multinomial logistic regression

Multinomial logistic regression
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Discrete choice models Multinomial logistic regression

Two conceptions of multinomial regression

I A series of binomial logits with the same reference category.
I Latent variable approach: Our utility of each choice.
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Discrete choice models Multinomial logistic regression

Two conceptions of multinomial regression

A series of binomial logits with the same reference category.

I Data is subset to compare two groups → data/variation intensive
model choice.

I Categories/choice are mutually exclusive → Different β for each
subset/choice

⇒ All choices are given a probability and they sum up to one.
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Discrete choice models Multinomial logistic regression

Two conceptions of multinomial regression

Latent variable approach: Imagine k choices modeled as ym = αm×βmx

I βmxi reflects the utility of a choice k for the chooser i with x
characteristic. → systematic term

I αm reflects the baseline utility of that choice → stochastic term

⇒ The preferred choice is the one with the highest utility because both or
either are high
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Discrete choice models Multinomial logistic regression

Main assumption: IIA

Independence of irrelevant alternatives:

I there are no choices beyond what is modeled
I consistency: if we prefer A > B and B > C, then also A > C

⇒ The β does not depend on on other values of y (other alternatives).
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Discrete choice models Multinomial logistic regression

Testing the main assumption:

The Hausmann-McFadden test: Removes an alternative (supposed to
be irrelevant) and check if β changes.

I Restricted model (a choice is removed) vs. unrestricted model
(original)

I if IIA holds, then unrestricted model has smaller variance.

⇒ χ2-test with smaller value indicatee IIA holds.
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Discrete choice models Multinomial logistic regression

Prediction testing

I Predict outcome
I predicted outcome/choice is the one with the highest probability/utility
I confusion matrix (Proportion of correct predictions: sum of diagonal

N observations )
I Probability of all outcomes separately: ROC curve and separation

plots

⇒ as in binomial regression, where you have one category vs. the rest
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Discrete choice models Multinomial logistic regression

Interpretation

All the possibilities of the binomial logit are open:

I The regression table
I Predicted probabilities (and comparisons/scenarios) for each category

I as with binomial logit, one line per category
I cumulative predicted probabilitites → illustrates tradeoffs

⇒ Remember reference cateogry is 1− the sum of all other probabilities
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Discrete choice models Multinomial logistic regression

Specific visual interpretations

If you have three categories (if M = 3)

I The three dimensional simplex
I The ternary plot: a sort of scatterplot for predicted probabilities

⇒ Illustrates tradeoffs
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Discrete choice models The conditional logit

The conditional logit
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Discrete choice models The conditional logit

From the chooser’s perspectives

The conditional logit holds the chooser constant, and considers
alternative choices

I x refers to characteristics of the choice (not chooser)
I Parallel regressions approach: a logit in a choice set
I One set of parameters, no intercept
I Long data format (observation = choice in individual)
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Discrete choice models The conditional logit

Mixing choosers and choices

The mixed conditional logit makes an interaction effect between
choice-set variables and choice variables.

I Think hierarchical models with cross-level interactions
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