Multinomial and ordered logits

Silje Synnøve Lyder Hermansen

17-11-2020

Silje Synnøve Lyder Hermansen

Multinomial and ordered logits

17-11-2020 1 / 55

Let's touch base

How confident are you about your math skills/R skills/stats skills with regards to this course?

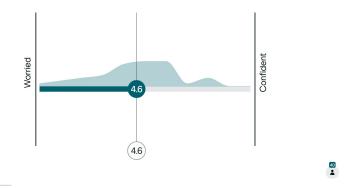
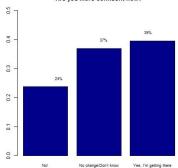


Figure 1: Many of you still have doubts about your skills. Use our reading groups and the feedback we give!

Let's touch base



Are you more confident now?

Figure 2: More of you are more confident now than last week, but not everyone.

Silje Synnøve Lyder Hermansen

Multinomial and ordered logits

Table of Contents

GLM: A recap

Ordered logistic regression

Latent variable approach: cutpoints

An example: Attitudes towards redistribution

Parallel regressions approach: for assessment

How good is our model?

An example of parallel regressions

Discrete choice models

Multinomial logistic regression

The conditional logit

Reminder: What is a GLM?

Regressions aim to describe (a linear) relationship between x and y with one number, β .

- Assumes a continuous and unbounded variable.
- When y is neither (e.g. binary), we relied on a latent continuous variable
- To approximate the latent variable, we calculated the logodds (i.e. we compare)

 \Rightarrow Probability distribution maps unobserved variable to observed outcomes.

Table of Contents

GLM: A recap

Ordered logistic regression

Latent variable approach: cutpoints

An example: Attitudes towards redistribution

Parallel regressions approach: for assessment

How good is our model?

An example of parallel regressions

Discrete choice models

Multinomial logistic regression

The conditional logit

Ordered logistic regression

What is an ordered variable?

A ranked variable with unknown distance between categories.

- Often the result of binning: Close connection to latent formulation.
- We can choose how to treat it: As linear, categorical or **ordinal**.

 \Rightarrow estimate a single set of regression parameters, but keep the information on the order without assuming a continuous variable.

Ordered logistic regression

Two conceptions of ordered logisitc regression

There are two ways of uncerstanding the ordered logit:

- Latent variable: useful for interpretation.
- ▶ Parallel regressions: useful for understanding and checking estimation.

Latent variable approach: cutpoints

Cutpoints

We rely on cutpoints to slice up the latent variable and determine outcomes

- ▶ **Binomial logistic:** One cutpoint. → Rarely estimated.
- ▶ Ordinal logistic: Serveral cutpoints. → Explicit.

 \Rightarrow Model estimates both regression parameters (β) and cutpoints (τ).

A series of cutpoints

You are in the category *m* when the latent variable is between its two cutpoints: $\tau_{m-1} < y^* < \tau_m$

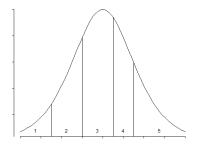


Figure 3: Slicing up a latent variable

Silje Synnøve Lyder Hermansen

Multinomial and ordered logits

The regression coefficients

The model calculates the odds of being lower than τ_m

- The first cutpoint (τ_0) is 0 (-inf): you cant be lower than the lowest.
- ▶ The last cutpoint is 1 (+*inf*): all observations are in some category.
- You end up with m-1 cutpoints.

The regression output

The regression output reports both β and τ

- Regression coefficient β is reported in relation to upper cutpoint of the category: τ_m - βx_i
- Cutpoints serve also as intercepts.

The predicted value

The predicted probability of being in category *m*:

$$Pr(y_i = m) = \frac{exp(\tau_m - \beta x_i)}{1 + exp(\tau_m - \beta x_i)} - \frac{exp(\tau_{m-1} - \beta x_i)}{1 + exp(\tau_{m-1} - \beta x_i)}$$
(1)

An example: Attitudes towards redistribution

An example:

ESS respondents (that voted H or FrP) are asked to what extent they believe the state should engage in redistribution (1 = disagree; 5 = agree).

```
#Load in data
df <- read.table(
    "https://siljehermansen.github.io/teaching/stv4020b/kap10.txt")</pre>
```

```
#Check distribution
barplot(table(df$Utjevn))
```

An example:

ESS respondents (that voted H or FrP) are asked to what extent they believe the state should engage in redistribution (1 = disagree; 5 = agree).

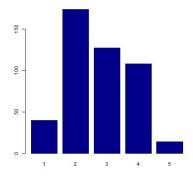


Figure 4: Attitudes towards redistribution is an ordered variable

Silje Synnøve Lyder Hermansen

Multinomial and ordered logits

Attitudes towards redistribution as a function of income

Attitudes towards redistribution as a function of income

```
## Call:
## polr(formula = Utjevn.ord ~ Inntekt, data = df, Hess = TRUE,
      method = "logistic")
##
##
## Coefficients:
##
            Value Std. Error t value
## Inntekt 0.08387 0.03128
                              2.681
##
## Intercepts:
##
      Value Std. Error t value
## 1 2 -2.0119 0.2422 -8.3052
## 2|3 0.3029 0.1994 1.5190
## 3|4 1.4724 0.2107 6.9883
## 4 5 3.9305 0.3317 11.8496
##
## Residual Deviance: 1218.94
## ATC: 1228.94
## (17 observations deleted due to missingness)
```

We learn two things from the regression output

Regression coefficient reports effect of x on probability to be placed one category higher

Effect in logodds: 0.084

 We can backtransform to one unit increase in x: (exp(β) - 1) × 100 = 9% increase in likelihood of a higher category.

 \Rightarrow Hypothesis testing as in a binomial logit

We learn two things from the regression output

We have one intercept per cutpoint

- ▶ e.g.: intercept of passing from 1 to 2 is -2.012
- e.g.: intercept is reported as significant (with standard errors)

 \Rightarrow The model does a fair job in distinguishing between categories.

Predicted scenarios

We interpret predicted probability by choosing one level of x and one category (two cutpoints) of y: What is the probability of m?

$$Pr(y_i = m) = \frac{exp(\tau_m - \beta x_i)}{1 + exp(\tau_m - \beta x_i)} - \frac{exp(\tau_{m-1} - \beta x_i)}{1 + exp(\tau_{m-1} - \beta x_i)}$$
(2)

Example

Let's choose low-income respondents (x = 1) and category 3 (diff between cutpoints 2 and 3)

```
z = mod.ord$zeta
x = 1
logodds1 <- z[3] - coefficients(mod.ord) * x
logodds2 <- z[3-1] - coefficients(mod.ord) * x
## Probabilities
p1 <- exp(logodds1)/(1 + exp(logodds1)) #3/4 or lower
p2 <- exp(logodds2)/(1 + exp(logodds2)) #2/3 or lower
## Difference between cutpoints
p1 - p2 #cat 3
```

An example

Predicted proportion in category

```
paste(round((p1-p2)*100),
"% of low-income respondents are predicted to answer x = 3 ('neutral')." )
```

[1] "25 % of low-income respondents are predicted to answer x = 3 ('neutral')."

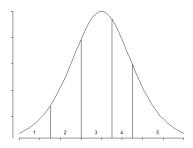
Cumulative probability

```
paste(round((p1)*100),
"% of low-income respondents are predicted to answer x = 3 ('neutral') or 1
```

[1] "80 % of low-income respondents are predicted to answer x = 3 ('neutral') or lower to the question of whether they support redistribution."

Two ways of viewing the slicing

We can report the probability (e.g. 0.25) of ending up between two cutpoints, or the *cumulative* probability (e.g. 0.8) to be below each point.



Exercice:

Increase the τ (z) within each value of Income (x)

```
##Create empty plot
plot(y = 0,
    x = 0.
    axes = FALSE.
     xlim = c(1,4),
    vlim = c(0, 1),
    ylab = "Probability of z or below",
     xlab = "Thresholds",
     main = "Cumulative probability \nof support for redistribution",
     type = "n")
axis(1, at = 1:length(p1),
    labels = names(p1))
axis(2)
```

Exercice:

Increase the τ (z) within each value of Income (x)

```
#Set values for prediction
x = 10 #Let this go from 1 to 10; check the shape of 10
z = mod.ord$zeta
#Logodds
logodds1 <- z - coefficients(mod.ord) * x</pre>
#Probabilities
p1 \le exp(logodds1)/(1 + exp(logodds1)) #3/4 or lower
#Plot probabilities
lines(y = p1,
      x = 1:length(p1),
      tvpe = "b")
#Set legend (report x-value)
legend("topleft",
       bty = "n",
       cex = 0.8.
     paste("Income = ", x))
```

```
#Plot probabilities
```

Parallel regressions approach: for assessment

Parallel regressions approach

The parallel regression approach is useful to understand how the model is estimated

- The y is recoded into m − 1 dummy variables indicating if y ≤ m
 Run a series of regressions where all β are fixed (i.e.: the same).
- \Rightarrow This is also useful when we assess the model

Ordered logistic regression How good is our model?

How good is our model?

The basic assumption

The basic assumption is that all parallel regressions have (about) the same regression coefficient

Check the mean of the predictor for each value of y. Does it trend?

tapply(df\$Inntekt, df\$Utjevn, mean, na.rm = T)

1 2 3 4 5 ## 4.742857 5.547059 5.438017 6.205607 6.571429

Run parallel regressions without contstraint on β . Are they similar?

Silje Synnøve Lyder Hermansen

Multinomial and ordered logits

An example of parallel regressions

Recode into dummies

The dummies flag cases below a cumulative threshold of outcomes

7	##											
ċ	lf <mark>\$</mark> ut1	<-	<pre>ifelse(df\$Utjevn</pre>	>	1,	1	,	0)	#2	or	above	
ċ	lf <mark>\$</mark> ut2	<-	<pre>ifelse(df\$Utjevn</pre>	>	2,	1	,	0)	#3	or	above	
ċ	lf <mark>\$</mark> ut3	<-	<pre>ifelse(df\$Utjevn</pre>	>	3,	1	,	0)	#4	or	above	
ċ	lf <mark>\$</mark> ut4	<-	<pre>ifelse(df\$Utjevn</pre>	>	4,	1	,	0)	#5			

 \Rightarrow The model then runs 4 regressions where β reports an aggregated value from all 4 coefficients (think: weigted mean).

Run four regressions

Let's examplify with the parallel regressions without fixed β :

##Parallel regressions: mod1 <- glm(ut1 ~ Inntekt, df, family = "binomial")</pre>

mour	•	8		111100110,	·	± a± J		, and the second
mod2	<-	<pre>glm(ut2</pre>	~	Inntekt,	df,	family	=	"binomial")
mod3	<-	<pre>glm(ut3</pre>	~	Inntekt,	df,	family	=	"binomial")
mod4	<-	glm(ut4	~	Inntekt,	df,	family	=	"binomial")

Compare coefficients from four regressions

##									
##									
##		Dependent variable:							
##									
##		ut1	ut2	ut3	ut4				
##		(1)	(2)	(3)	(4)				
##									
##	Inntekt	0.133**	0.057*	0.109***	0.127				
##		(0.067)	(0.035)	(0.039)	(0.101)				
##									
##	Constant	1.772***	-0.155	-1.629***	-4.204***				
##		(0.367)	(0.216)	(0.259)	(0.711)				
##									
##									
##	Observations	447	447	447	447				
##	Log Likelihood	-120.685	-306.937	-257.053	-61.452				
##	Akaike Inf. Crit.	245.370	617.875	518.105	126.903				
##									
##	Note:		*p<0.1;	**p<0.05;	***p<0.01				
			_ `		-				

Silje Synnøve Lyder Hermansen

Multinomial and ordered logits

Coefficient should be a weighted average from four regressions

These β s are weighted by the number of observations in each category:

table(df\$Utjevn)

1 2 3 4 5 ## 40 174 127 108 14

Silje Synnøve Lyder Hermansen

Multinomial and ordered logits

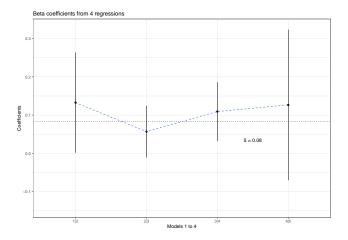
We can plot the β s for comparison:

We can plot the β s for comparison:

```
ggplot() +
 geom point(aes(y = results[, "Estimate"],
                 x = thresholds) +
 geom_smooth(aes(y = results[, "Estimate"],
                  x = 1:4),
             lty = 2.
             1wd = 0.5) +
 geom segment(aes(x = 1:4,
              xend = 1:4.
               v = results[, "Estimate"]-results[, "Std. Error"]*1.96.
               vend = results[, "Estimate"]+results[, "Std, Error"]*1.96)) +
 theme bw() +
 ylim(c(results[, "Estimate"][2]-results[, "Std. Error"][4]*2.
         results[, "Estimate"][4]+results[, "Std, Error"][4]*2)) +
 geom hline(vintercept = mod.ord$coefficients,
            1ty = 3) +
 geom_text(aes(y = mod.ord$coefficients-0.05,
                x = 3.5.
               label = paste("\u03b2 =", round(mod.ord$coefficients,2))
                ).
           parse = F) +
 labs(title = "Beta coefficients from 4 regressions") +
 vlab("Coefficients") +
 xlab("Models 1 to 4")
```

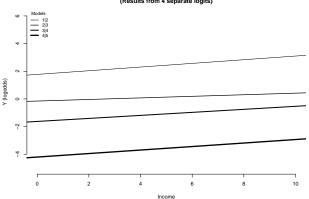
We can plot the β s for comparison:

The overall β is 0.08. If the ordered model describes the data well, then all the unconstrained β s should ressemble that description.



A visual inspection

A more visual way of checking the "parallel lines assumption" is to inspect if the regression lines are parallel.



When is it smart to run an ordered logit?

- You have few categories
- Fairly equal spread of observations between categories

Table of Contents

GLM: A recap

Ordered logistic regression

Latent variable approach: cutpoints

An example: Attitudes towards redistribution

Parallel regressions approach: for assessment

How good is our model?

An example of parallel regressions

Discrete choice models

Multinomial logistic regression

The conditional logit

Discrete choice models

Dependent variable: nominal

The discrete choice models describe mutually exclusive choices.

- The choice variable is nominal: we cannot rank it
- Our *appreciation* of it is continuous. Two sets of models:
 - Multinomial: Models chooser characteristics
 - Conditional logit: Models choice characteristics

Discrete choice models Multinomial logistic regression

Multinomial logistic regression

Two conceptions of multinomial regression

A series of binomial logits with the same reference category.
 Latent variable approach: Our utility of each choice.

Two conceptions of multinomial regression

A series of binomial logits with the same reference category.

- ▶ Data is subset to compare two groups → data/variation intensive model choice.
- \blacktriangleright Categories/choice are mutually exclusive \rightarrow Different β for each subset/choice

 \Rightarrow All choices are given a probability and they sum up to one.

Two conceptions of multinomial regression

Latent variable approach: Imagine *k* choices modeled as $y_m = \alpha_m \times \beta_m x$

- ▶ $\beta_m x_i$ reflects the utility of a choice k for the chooser i with x characteristic. → systematic term
- ▶ α_m reflects the baseline utility of that choice → stochastic term

 \Rightarrow The preferred choice is the one with the highest utility because both or either are high

Main assumption: IIA

Independence of irrelevant alternatives:

- there are no choices beyond what is modeled
- consistency: if we prefer A > B and B > C, then also A > C

 \Rightarrow The β does not depend on on other values of y (other alternatives).

Testing the main assumption:

The Hausmann-McFadden test: Removes an alternative (supposed to be irrelevant) and check if β changes.

- Restricted model (a choice is removed) vs. unrestricted model (original)
- if IIA holds, then unrestricted model has smaller variance.

 $\Rightarrow \chi^2$ -test with smaller value indicatee IIA holds.

Prediction testing

Predict outcome

- predicted outcome/choice is the one with the highest probability/utility
- confusion matrix (Proportion of correct predictions: sum of diagonal N observations)
- Probability of all outcomes separately: ROC curve and separation plots

 \Rightarrow as in binomial regression, where you have one category vs. the rest

Interpretation

All the possibilities of the binomial logit are open:

- The regression table
- Predicted probabilities (and comparisons/scenarios) for each category
 - as with binomial logit, one line per category
 - cumulative predicted probabilitites \rightarrow illustrates tradeoffs

 \Rightarrow Remember reference cateogry is 1- the sum of all other probabilities

Specific visual interpretations

If you have three categories (if M = 3)

- The three dimensional simplex
- The ternary plot: a sort of scatterplot for predicted probabilities

 \Rightarrow Illustrates tradeoffs

Discrete choice models The conditional logit

The conditional logit

From the chooser's perspectives

The conditional logit holds the chooser constant, and considers alternative choices

- x refers to characteristics of the choice (not chooser)
- Parallel regressions approach: a logit in a choice set
- One set of parameters, no intercept
- Long data format (observation = choice in individual)

Mixing choosers and choices

The mixed conditional logit makes an interaction effect between choice-set variables and choice variables.

Think hierarchical models with cross-level interactions