Models of outcome and choice: The logit model

Silje Synnøve Lyder Hermansen

November 12, 2020

Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

nterpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

Let's touch base

interactively.

We will be using mentimeter (menti.com) to communicate

- answer questions on www.menti.com using the access code 72 12 70 2
- results show on screen
- ⇒ Relax, your answers are anonymous!

Let's touch base

How confident are you about your math skills/R skills/stats skills with regards to this course?

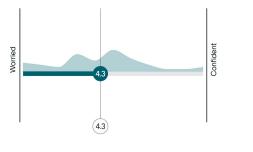


Figure: It seems a few of you have a few doubs. Yet, last year most students finished with good grades.

Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

nterpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

Section 2

A latent variable approach to GLMs

OLS assumes a continuous dependent variable. But many phenomena in the social sciences are not like that.

- ➤ Vote choice, civil conflict onset, legislator performance, court rulings, time to compliance, etc.
- ▶ What phenomena are you interested in?
- ⇒ OK. Let's strategize.

What type of phenomena are you interested in?

Political trust	Civil war	Governance/state capacity/infrastate armed conflicts
Terrorism	judicial dissental	Positive peace, reconciliation, peace agreements
Trust in political institutions	Sotisfaction with welfare distribution etc.	Climate laws

What type of phenomena are you interested in?

political survival/reelection		Policystringency		Breakdown of authoritarian regimes
allmate change mitigation, political radicalism		voting behavior and media effects during election campaigns		Renewable energy policies
			J	
Election outcomes		Public sector efficiency		Political efficacy

What type of phenomena are you interested in?

Outbreak of civil conflict within a given state.	Political parties and elections	Hvorvidt en spesifikk type gruppe i samfunnet stemmer på ett gitt politisk parti. Aka Y = Stemte parti <3
economic inequality	Free trade and integration	Immigration
Case outcomes in ECJ	Women's representation	International trade

What type of phenomena are you interested in?

	Writing my thesis on al-Bashir's repressive regime during the uprisings in Dec 18-April 19, so would be protest occurrence		Trust in public institutions		Elections
	on a given day				
		J	EU noncompliance		voting behavior and media effects in election campaings
	Environmental governance)	
		ו	Womens participation in nonviolent maximalist compaigns		Candidates' decision running for election
	welfare state reform			, ,	

What type of phenomena are you interested in?

Having young kids makes it less propable to take part in the labour force. Having college educaction makes it more propable to take part in the labour force. If u have college educaction gives Q8 logods increase in taking part in labour force.

All regressions are linear(ized)

The basic formulation in any regression describes a linear relationship between x_i and y_i :

$$y_i = \alpha + \beta x_i + \epsilon_i \tag{1}$$

- ▶ When x_i increases with one unit, y_i increases with β units.
- ▶ If that relationship is not linear, we have to make it so:
 - \triangleright by recoding the x_i
 - **b** by recoding the $y_i \rightarrow$ we *linearize*.

A latent variable

A linear(ized) model requires a continuious dependent variable.

- ▶ Imagine we are interested in unobservable variable, z_i , that describes our propensity towards something.
- Above a certain threshold (τ) of z_i , observability kicks in and we can see y_i .
- ▶ The regression coefficients (β) in GLMs describe that relationship.
- ⇒ The latent variable approach is useful when interpreting the results.

Example: The binomial model

The logit model is a perfect example:

$$y_i = \begin{cases} 1 & \Leftrightarrow & z_i > \tau \\ 0 & \Leftrightarrow & z_i \leqslant \tau \end{cases} \tag{2}$$

- ▶ The probability (z_i) of an outcome y_i is continuous.
- Above a certain probability (τ) , we observe a positive outcome $(y_i = 1)$.
- \Rightarrow but how do we set the value of τ ?

From latent variable to descrete outcomes

Statistical theory helps us describe how z_i leads to y_i .

- ▶ What kind of process generated our data? \rightarrow data generating process (DGP)
- ightharpoonup How can we best describe it? ightharpoonup choice of *probability distribution* (in GLM)

The three components of GLMs

When fitting the model, we need to make three choices:

- \triangleright A linear predictor: βx_i .
- ► A probability distribution: they're all in the exponential family
- A recoding strategy

The three components of GLMs

In R this translates to two additional arguments compared to your usual OLS.

- ightharpoonup A linear predictor: \rightarrow (y \sim x).
- A probability distribution: → (family =)
- A recoding strategy → (link =).

Latent variable approach for interpretation

- The latent variable approach is useful when interpreting results.
- ► That's when we map *from* the latent variable *to* the observed outcome.
- ⇒ When estimating the model, we have to go the other way 'round.

Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable?

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

Interpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

Section 3

Recoding: How do we get from a binary to a continuous variable?

Data structure

We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- classes of observations: e.g.: rats in a cage, coin tosses...
- ► case-based: e.g.: legislator votes, Brexit...

Data structure

We can only observe the outcome produced by the latent variable. There are two data structures for binary data:

- Classes of observations: e.g.: rats in a cage, coin tosses... → the closest to the latent continuous variable.
- case-based: e.g.: legislator votes, Brexit...
- \Rightarrow we know the number of successes and trials in a cage/class/stratum. That's our starting point.

Let's start with the odds

Despite binary outcomes, we want a continuous variable that is unbounded at both ends. We define a stratum and start comparing:

- ▶ Odds: Compare number of successes with number of failures within a stratum→ continuous but highly skewed.
- ightharpoonup Logtransform the odds ightarrow continuous and bell shaped.

Let's examplify with rats

We kept a 1000 rats in a cage and a number of them died (failure) while others are still alive (success). How can we model this?

We calculate the odds

We calculate the odds of surviving in a cage in a 1000 cages

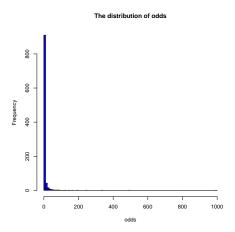
► Let's consider a series of 1000 trials where we let the successes go from complete failure (success = 0) to complete success (success = 1000)

```
success = 0:1000
tries = 1000
#remember: failure = tries - success
odds <- success/(tries - success)
hist(odds, breaks = 100, col = "blue")
hist(log(odds), breaks = 101, col = "blue")</pre>
```

plot(log(odds), success, type = "1")

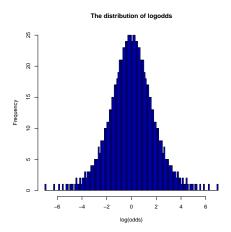
Let's start with the odds

We get a continuous but skewed variable.



Now, let's logtransform the odds

We get a nice, bellshaped curve.

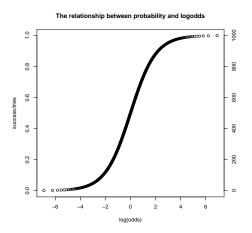


Now, let's logtransform the odds

This, we can run regressions on!

The famous S shape

We can plot the logodds of success against the number of successes or their probability (it's the same).



Probability distributions for binary variables

There are two, closely related probability distributions for binary outcomes:

- ▶ The binomial distribution: B(n, p)
 - p is the probability of success tells where on the x-axis (trials) the distribution is placed.
 - n is the number of trials and defines the precision (width) of the distribution.
- ▶ The Bernoulli distribution: Ber(p): when we only have only one trial.

Subsection 2

Why all the fuzz? Why not OLS?

Distributions in OLS and maximum likelihood

- In OLS: The residuals must be normally distributed (but not the y_i)
- In ML: The z_i must follow a known probability distribution.
- ⇒ This what allows us to translate the latent variable to outcomes.

What happens if I run a linear model on binary outcomes?

- The model predicts out of the possible bounderies
 - Predictions are wrong.
 - Regression coefficients are wrong.
 - Standard errors are wrong.
- \triangleright The relationship between x_i and y_i is constant across all values.
- \Rightarrow This last element has a bearing for the interpretation.

Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable

The binomial distribution: successes and fail

Why all the fuzz? Why not OLS?

Interpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

Interpretation Back and forth

Section 4

Interpretation: So... what did I find?

Subsection 1

Back and forth: Logistic and logit transformation

The logit transformation

When we go from outcomes to latent variable we use the logit transformation.

$$logit(p) = log(\frac{p}{1-p}) \tag{3}$$

⇒ This what R does when estimating our model

The logistic transformation

When we go from the latent variable to outcomes we use the logistic transformation.

$$logit^{-1}(logodds) = \frac{exp(logodds)}{1 + exp(logodds)} = \frac{1}{1 + exp(-logodds)}$$
(4)

⇒ This what we do when interpreting our model

My three stages of interpretation

I go through tree stages of interpretation

- Inspect the marginal effects from regression table
 - Logodds: check direction and significance.
 - Odds ratio (for large coefficients) and percentage change (for smaller coefficients).
- Formulate scenarios using point estimates (in text)
- Formulate more scenarios with uncertainty using graphics.

Warning: package 'haven' was built under R version
4.0.3

The regression table: marginal effects

I interpret the regression coefficient itself

- Change in logodds: check direction and significance.
- Odds ratio (for large coefficients) and percentage change (for smaller coefficients).
- \Rightarrow A first stab at hypothesis testing.

The regression table: marginal effects

Now, you try! What statements would you make using the change in logodds, the odds ratio and percentage change?

Table: Women's labor force participation (a binomial logit)

	Dependent variable:
	lfp
young.kids	-0.963***
	(0.159)
college.woman	0.818***
	(0.180)
Constant	0.285***
	(0.092)
Observations	753
Log Likelihood	-486.489
Akaike Inf. Crit.	978.977
Note:	*p<0.1; **p<0.05; ***p<0.01

The regression table: marginal effects

Typical statements about marginal effects

- ► Change in logodds: "Kids decrease labor force participation, while education increases it. Both are statistically significant."
- ▶ Odds ratio (for large coefficients; 0.818): "Education more than doubles (multiplies by a factor of 2.3) women's likelihood of participation."
- ▶ Percentage change (for smaller coefficients; -0.963)."Women's likelihood of holding paid employment decreases by 62% for each kid in the household."
- \Rightarrow A first stab at hypothesis testing.

Predicted values

If you believe the model describes reality appropriately, you can learn more about it by interpreting more thoroughly

- Odds ratios are notoriously hard to understand.
- The effect depends on the value of y; and all the other xs.
- ⇒ Interpret the predicted values

Predicted point estimates (text)

Formulate scenarios using point estimates (in text)

- ► Take an all-else-equal approach: Let one *x* change and keep all others constant (on a typical value).
- Find the typical representative of two x values and set the other xs accordingly.
- ⇒ Which one you use depends on your objective: A theoretical point, assess effect of intervention on groups...

Predicted point estimates (text)

Now you try! What is the predicted probability of labor force participation among women...

- without kids and no education.
- with one kid and no education.
- do the same with women who have college education.
- ⇒ Compare the two predicted probabilities.

```
#Proportion of labor force participation:
#No college, no kids
logodds1 <- 0.285 + 0.818*0 + -0.963 * 0
prob1 \leftarrow 1/(1+exp(-logodds1))
prob1
## [1] 0.5707716
#No college, one kid
logodds2 < -0.285 + 0.818*0 + -0.963 * 1
prob2 \leftarrow 1/(1+exp(-logodds2))
prob2
## [1] 0.3367078
#Effect in predicted probability of having a kid
prob2 - prob1
## [1] -0.2340638
```

```
#Proportion of labor force participation:
#College, no kids
logodds3 <- 0.285 + 0.818*1 + -0.963 * 0
prob3 \leftarrow 1/(1+exp(-logodds3))
prob3
## [1] 0.7508218
#College, one kid
logodds4 <- 0.285 + 0.818*1 + -0.963 * 1
prob4 \leftarrow 1/(1+exp(-logodds4))
prob4
## [1] 0.5349429
#Effect in predicted probability of having a kid
prob4 - prob3
## [1] -0.2158788
```

Predicted point estimates (text)

Notice how the value of education impacts the effect of having kids!

- Marginal effect: Women's likelihood of holding paid employment decreases by 62% for each kid in the household. → holds for all values of x.
- ▶ First difference (scenario 1): We see that having a kid for a woman without college education would decrease her likelihood of working by 23 percentage points (from 57 percentage points to 34 percentage points).
- ▶ First difference (scenario 2): We see that having a kid for a woman with college education would decrease her likelihood of working by 22 percentage points (from 75 percentage points to 53 percentage points).
- ⇒ This is an implicit interaction effect.

Predicted values (graphic)

Formulate scenarios using point estimates and put them on speed

- Predict y values for the entire range of x and plot it.
- Simulate confidence and plot that too.
- You can do this for two scenarios.
- ⇒ You get a sense of the actual differences in the data.

Table of Contents

Before we start

A latent variable approach to GLMs

Recoding: How do we get from a binary to a continuous variable

The binomial distribution: successes and failures

Why all the fuzz? Why not OLS?

nterpretation: So... what did I find?

Back and forth: Logistic and logit transformation

My three stages of interpretation

Model assessment: How well is reality described?

How well do I discriminate?

Section 5

Model assessment: How well is reality described?

Model assessment

Model assessments aim to gauge how well we describe the data (i.e. the y).

- comparison between predicted and observed values (as in OLS).
- mapping outcomes to the recoded, "latent" variable (GLM).
- ⇒ You have a few additional "tricks" to the standard OLS assessment.

Brier score

Describes the "average size" of the residuals.

$$B_b \equiv \frac{1}{n} \sum_{i=1}^n (\hat{\theta}_i - y_i)^2 \tag{5}$$

⇒ Lower scores imply better predictions.

How well do I discriminate?

The real question for logits is how well do I distinguish 0s from 1s.

 \Rightarrow Several strategies.

Table comparison

The real question for logits is how well do I distinguish 0s from 1s.

- ightharpoonup Table (e.g. 2 imes 2) with proportion of predicted against observed values for 0s and 1s
- ▶ It is χ^2 distributed (ref. the Hosmer-Lemeshow test)
- \Rightarrow But how do I set the cut values (the τ)?

The ROC curve

The ROC lets the cut values vary and displays how wrong we are on each side (true positive vs. false positive).

- ▶ A model with good predictions has a curve tending towards the upper left corner.
- ▶ The actual cut value depends on our priorities
- ⇒ The graphic is useful in and of itself

The separation plot

The separation plot show how the density of observed "successes" increases as our predicted values increase.

⇒ Another graphic that is useful in and of itself