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Count models: What are they good for?

When do we use count models?

The data generating process allows us to

I observe and count a number of events and
I define a time frame or geograhical space for the occurence(s)

⇒ e.g. number of meetings between decision makers, violent events,
legislative proposals, etc.
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Count models: What are they good for?

Why not a binomial logistic regression?

These are indeed binary outcomes

but we don’t have information on
the event level

⇒ Variables are on the exposure level; related to when (where) the events
took place.
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Count models: What are they good for?

Why not OLS?

The variable could be approximated to a continuous measure but

I it is bounded at zero, so predictions would be wrong → same problems
as logit

I it is scewed. Some people add a constant and logtransform:
log(y + 0.1) → but heteroskedasticity and non normal errors remain

⇒ We replace the normal distribution with another probability distribution
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Count models: What are they good for?

The generalized linear model strategy

There are many count models

I Poisson model: the base-line
I Other models: to address problems with the poisson
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The Poisson model

Poisson process

The poisson distribution maps probabilities of events within a
window to outcomes

I Exposure (t, t + h): A window of opportunity between two bounaries
(geographical or spacial)

I Probability of event (λ): Simply the logtransformed mean of events
within that window

I Probability of event = hλ
I Probability of no event = 1 - hλ
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The Poisson model

Formula

The equation the model estimates:

E (yi ) ≡ hλi = h × exp(α + β × xi ) (1)
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The Poisson model

Estimation of the exposure

What to do with the exposure parameter?

E (yi ) ≡ hλi = h × exp(α + β × xi ) (2)

Two strategies :

I Offset: Move it into the equation but constrain parameter:
exp(α + β × xi + 1× log(hi ))

→ we don’t see it in the BUTON

I Estimate a parameter: exp(α + β1 × xi + β2 × log(hi ))

⇒ If the exposure is the same for all units, we set it to 1 and ignore it.
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The Poisson model

Interpretation: back and forth

Interpretation is relatively easy with all count models

I Recoding (for estimation): we logtransform the mean of the y (within
x-values)

I We back-transform (for interpretation): exp(λ) is simply an
approximation (with digits) of our counts!
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The Poisson model

Interpretation: effects

Interpretation is relatively easy

I Recoding (for estimation): we logtransform the mean of the y (within
x-values)

I We back-transform (for interpretation):

I Predicted value: exp(λ̂) is simply an approximation (with digits) of our
counts

I Effect of β: exp(β) is multiplicative of predicted λ̂ → easy!

⇒ Make scenarios, predict, knock yourself out
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Dispersion

Dispersion
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Dispersion

The main assumption of the Poisson model

The model assumes equidispersion: The spread equals the mean

I The y can be overdispersed, but not the λ̂

→ as in OLS

⇒ The standerd errors will be too small
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Dispersion

Identifying overdispersion

I Poissonness plot

I Rootograms
I Formal tests: Using residuals and significance tests.
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Dispersion

Reasons for overdispersion

I Lack of exposure time

I Poor choice of variables (include more, also random intercepts)
I Too many zeros
I Events are related
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The negative binomial model

The event is in fact generated by two processes

I λi = exp(β × xi + 1× ui )
I v = exp(ui ) is in itself generated by a gamma distribution vi ∼ f Γ(α)
I The latent variable is manipulated directly: the rate increases over y
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Exess zeros

Substantially that two data generating processes are at work.**

I One producing zeros
I One producing (at least some) positive counts ⇒ We can model this in

two parallel regressions
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Dispersion Adressing overdispersion

Hurdle models

If you pass the threshold in the first model, the positive counts are
included in a second regression.

I Hurdle part: A binomial logit. Where success is y > 0
I Count model: A zero-truncated poisson on all the positive counts.

⇒ The two models can have different predictors

⇒ Can accomodate under-dispersion too.
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