Randomization

Silje Synnøve Lyder Hermansen

03-12-2019

Silje Synnøve Lyder Hermansen

Randomization

Where are we? And what are we at?

We've completed the first part of the course: Congrats!

- Our focus has been on *describing* data: GLMs
- Now, we'll focus on *research design*: causal inference

The goal of the social sciences

The goal of the social sciences

Why do we run regressions?

We run regressions to learn about the world, which means...

• To describe data \rightarrow observe the world

but how do we know if it's not an illusion?

 \blacktriangleright To make causal claims \rightarrow manipulate the world

... in the social sciences, that's not always possible

 \Rightarrow We design studies to approximate manipulation

We want to make causal claims

Two (compatible) approaches.

Logic of inference: (King, Keohane and Verba, 1994)

- We can only imperfectly observe the world
- ... but we can theorize (causal mechanism)
- ... and test hypotheses (observable implications)

\Rightarrow A closer connection between theory and statistics (e.g. EITM).

The goal of the social sciences

We want to make causal claims

Two (compatible) approaches.

- Logic of inference: (King, Keohane and Verba, 1994)
- Potential outcomes (Donald Rubin)

What is causation?

A sequence of events in which – if the first didn't happend – the second wouldn't occur either.

- We can manipulate the first event \rightarrow what happens then?
- Can we infer what would have happened if we did not manipulate?

 \Rightarrow Potential outcomes

We want to make causal claims

Two (compatible) approaches.

- Logic of inference: (King, Keohane and Verba, 1994)
- Potential outcomes (Donald Rubin)
 - causal effect: difference between what is and could have been

 \Rightarrow a set of methods designed for causal inference with observational data

The conundrum

The conundrum

The conundrum The true causal effect

The true causal effect

What is causal effect?

Imagine two versions of me.

- ▶ I have a headache and I take an aspirine $(Y_{1,Silje})$.
- ▶ I have a headache but receive no treatment $(Y_{0,Silje})$.

 \Rightarrow the causal effect is $Y_1 - Y_0$

True causal effect

A causal effect is the difference between two potential outcomes

but – at best – I can only observe one outcome.

The conundrum

The true causal effect

True causal effect is NOT POSSIBLE to observe

A causal effect is the difference between two potential outcomes

but – at best – I can only observe one outcome.

\Rightarrow We have to compare two different individuals

The conundrum Plan B

Plan B

Plan B: Can we compare across cases?

Let's compare my headache now with Øyvind's current headache ($Y_{1,Silje} - Y_{1,Oyvind}$)

Let's compare my headache now with Øyvind's current headache ($Y_{1,Silje} - Y_{1,Oyvind}$)

Can we compare two individuals post treatment?

Let's compare my headache now with Øyvind's current headache ($Y_{1,Silje} - Y_{1,Oyvind}$)

but did he even have a headache before?

Is there a selection bias?

How did Øyvind's case look untreated?

Randomization

How did Øyvind's case look untreated?

What do we compare?

Where's the selection bias?

Randomization

The solution

We have to observe Øyvind's untreated headache ($Y_{0,Oyvind}$) and compare with treated me ($Y_{1,Silje}$)

$$Y_{Silje} - Y_{Oyvind} = Y_{1,Silje} - Y_{0,Oyvind} = Y_{1,Silje} - Y_{0,Silje} + Y_{0,Silje} - Y_{0,Oyvind}$$
(1)

Causal effect: Y_{1,Silje} - Y_{0,Silje}
 Selection bias: Y_{0,Silje} - Y_{0,Oyvind}

How to do it?

How to do it?

We use statistics

We cannot observe two potential outcomes, but we can rely on the law of large numbers (LLN).

► We use **average** causal effect

Average causal effect = Differences in means - Selection bias

Differences in means

We create a dummy for treated vs. untreated observations:

$$D_{i} = \begin{cases} 1 \quad \Leftrightarrow \quad treated \\ 0 \quad \Leftrightarrow \quad untreated \end{cases}$$
(2)

We calculate the differences in means

$$= Avg_n[Y_i|D_i = 1] - Avg_n[Y_i|D_i = 0]$$
(3)

Differences in means

We create a dummy for treated vs. untreated observations:

$$D_{i} = \begin{cases} 1 \quad \Leftrightarrow \quad treated \\ 0 \quad \Leftrightarrow \quad untreated \end{cases}$$
(4)

We calculate the differences in means

$$= Avg_n[Y_i|D_i = 1] - Avg_n[Y_i|D_i = 0] = Avg_n[Y_{1,i}|D_i = 1] - Avg_n[Y_{0,i}|D_i = 0]$$
(5)

Silje Synnøve Lyder Hermansen

Basic assumption

We have to assume that the treatment has the same effect accross all units

- then we can compare across units
- contrast that with the effect of β in OLS vs GLM

Selection bias

Now we have to get rid of the selection bias!

- ► A priori selecting units without bias: randomization
- ► A posteriori assessing the bias and extract it: Rubin's contribution

Why not just compare?

Consider the fate of young mothers

https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(16)31411-8/fulltext

How to do it? The gold standard

The gold standard

Randomization

Randomization is the gold standard. This requires

- ► manipulation → experiments
- ▶ a sufficient number of units (LLN) \rightarrow statistical power

 \Rightarrow Randomization eliminates bias

Checking on observables

Even when we randomize, we check for signs of selection bias

- we cannot observe the bias
- but we can check the balance of possible correlates (of bias)
- \Rightarrow Here comes the social science theories back in!

Checking on observables

Even when we randomize, we check for signs of selection bias

 \Rightarrow We verify the balance of pre-treatment variables

How to do it? The post hoc fixes

The post hoc fixes